Search published articles


Showing 11 results for Dehghani

Dehghanian C., Saremi M., Mohammadi Sabet M.,
Volume 2, Issue 1 (Oct 2005)
Abstract

The synergistic behavior of molybdate and phosphate ions in mitigating the corrosion of mild steel in simulated cooling water was evaluated performing potentiodynamic polarization and impedance spectroscopy tests. Phosphate and molybdate showed a synergistic effect on corrosion inhibition of steel in simulated cooling water. The observed reduction in anodic and cathodic current densities could be the consequence of incorporation of both phosphate and molybdate ions in forming a protective layer on the surface. The charge transfer resistance of the protective layer formed on steel surface was much greater in presence of both ions in solution than that when each inhibitor used alone.
C. Dehghanian, Y. Mirabolfathi Nejad,
Volume 5, Issue 1 (winter 2008 2008)
Abstract

Abstract: Despite having a number of advantages, reinforced concrete can suffer rebar corrosion in high–chloride media, resulting in failure of reinforced concrete structures. In this research the corrosion inhibition capability of the mixture of calcium and ammonium nitrate of steel rebar corrosion was investigated in the simulated concrete pore solution. Cyclic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques were applied on steel concrete pore solution containing 2 weight percent sodium chloride (NaCl). Results show that such mixtures had higher inhibition efficiency than calcium nitrate alone. The optimum concentration of the inhibitor mixture was determined to be 45 mgr/lit.
N. Eslami Rad*, Ch. Dehghanian,
Volume 7, Issue 4 (Autumn 2010 2010)
Abstract

Abstract: Electroless Nickel (EN) composite coatings embedded with Cr2O3 and/or MoS2 particles were deposited to combine the characters of both Cr2O3 and MoS2 into one coating in this study. The effects of the co-deposited particles on corrosion behavior of the coating in 3.5% NaCl media were investigated. The results showed that both Ni-P and Ni-P composite coatings had significant improvement on corrosion resistance in comparison to the substrate. Codeposition of Cr2O3 in coating improved corrosion characteristic but co-deposition of MoS2 decreased corrosion resistance of the coating.
M. Alipour, S. Mirjavadi, M. K. Besharati Givi, H. Razmi, M. Emamy, J. Rassizadehghani,
Volume 9, Issue 4 (December 2012)
Abstract

In this study the effect of Al–5Ti–1B grain refiner on the structural characteristics and wear properties of Al–12Zn–3Mg–2.5Cu alloy was investigated. The optimum amount for Ti containing grain refiners was selected as 2 wt.%. T6 heat treatment, (i.e. heating at 460 °C for 1 h before water quenching to room temperature and then aging at 120 °C for 24 h) was applied for all specimens before wear testing. Dry sliding wear resistant of the alloy was performed under normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al–12Zn–3Mg–2.5Cu alloy to dry sliding wear.
A. Shahcheraghi, F. Dehghani, K. Raeissi, A. Saatchi, M. H. Enayati,
Volume 10, Issue 1 (march 2013)
Abstract

Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initial discharge capacity and exchange current density of hydrogen are increased by adding 5wt% TiO2, while the cycle stability and bulk hydrogen diffusivity don’t change. It is found that the charge transfer resistance of Mg2Ni–5wt% TiO2 composite is lower than that of Mg2Ni alloy. On the other hand, the hydrogen oxidation during the discharge process proceeds more easily on the electrode surface containing TiO2 additive.
H. Torkamani, H. Rashvand, Sh. Raygan, J. Rassizadehghani, Y. Palizdar, C. Garcia Mateo, D. San Martin,
Volume 14, Issue 3 (September 2017)
Abstract

In industry, the cost of production is an important factor and it is preferred to use conventional and low cost procedures for producing the parts. Heat treatment cycles and alloying additions are the key factors affecting the microstructure and mechanical properties of the cast steels. In this study an attempt was made to evaluate the influence of minor Mo addition on the microstructure and mechanical properties of conventionally heat treated cast micro-alloyed steels. The results of Jominy and dilatometry tests and also microstructural examinations revealed that Mo could effectively increase the hardenability of the investigated steel and change the microstructure features of the air-cooled samples. Acicular microstructure was the consequence of increasing the hardenability in Mo-added steel. Besides, it was found that Mo could greatly affect the isothermal bainitic transformation and higher fraction of martensite after cooling (from isothermal temperature) was due to the Mo addition. The results of impact test indicated that the microstructure obtained in air-cooled Mo-added steel led to better impact toughness (28J) in comparison with the base steel (23J). Moreover, Mo-added steel possessed higher hardness (291HV), yield (524MPa) and tensile (1108MPa) strengths compared to the base one.


N. Aboudzadeh, Ch. Dehghanian, M.a. Shokrgozar,
Volume 14, Issue 4 (December 2017)
Abstract

Recently, magnesium and its alloys have attracted great attention for use as biomaterial due to their good mechanical properties and biodegradability in the bio environment. In the present work, nanocomposites of Mg - 5Zn - 0.3Ca/ nHA were prepared using a powder metallurgy method. The powder of Mg, Zn and Ca were firstly blended, then four different mixtures of powders were prepared by adding nHA in different percentages of 0, 1, 2.5 and 5 %wt. Each mixture of powder separately was fast milled, pressed, and sintered. Then, the microstructure and mechanical properties of the fabricated nanocomposites were investigated. The XRD profile for nanocomposites showed that the intermetallic phases of MgZn2, MgZn5.31 and Mg2Ca were created after sintering and the SEM micrographs showed that the grain size of nanocomposite reduced by adding the nHA. The nano composite with 1wt. % nHA increased the density of Mg alloy from 1.73 g/cm3 to 1. 75 g/cm3 by filling the pores at the grain boundaries. The compressive strength of Mg alloy increased from 295MPa to 322, 329 and 318MPa by addition of 1, 2.5 and 5wt. % nHA, respectively.

E. Abbasi, K. Dehghani, T. Niendorf, S. V. Sajadifar,
Volume 17, Issue 4 (December 2020)
Abstract

The effect of cooling rate after annealing at 900 °C on the microstructure and hardness of high entropy alloys was investigated using two typical samples with the chemical composition of Co16Cr14.5Fe29Mn11.5Ni29 and Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) (at%). The microstructural characterisation and hardness measurements were carried out by optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray spectroscopy, electron back scattered diffraction, X-ray diffraction technique and Vickers hardness testing. A face centred cubic crystal structure matrix was observed in both alloys before and after annealing and regardless of cooling conditions. SEM analyses revealed an extensive precipitation in Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) alloy after annealing. It was also found that air/furnace cooling can enhance grain growth-coarsening just in Co16Cr14.5Fe29Mn11.5Ni29. However, the hardness results generally showed insignificant hardness variations in both alloys after water-quenching, air-cooling and furnace-cooling. The results suggested that the hardness is mainly controlled by solid solution strengthening.
Farnaz Dehghani Firoozabadi, Ahmad Ramazani Saadatabadi, Azadeh Asefnejad,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract

Fabrication of fully optimized tissue-engineered materials in order to simulating the natural structure, and enhancing the biological properties of damaged tissue is one of the major challenges in biomedical engineering and regeneration medicine. Although polymeric based membranes have revealed noticeable advancements in bone regeneration, their mechanical stiffens, electrical conductivity and bioactivity need to be tolerated.
 Therefore, the present study is designed to generate a multifunctional biomaterial based on polylactic acid (PLA)/ polycaprolactone (PCL)/hydroxyapatite (HA) nanocomposite containing zinc oxide (ZnO) and Graphene (Gr) nanoparticles employing solvent casting combined with die cast techniques for using as absorbable joint implants in bone tissue regeneration. The physical, chemical, mechanical and biological properties of the produced nanocomposite biomaterials were analyzed in vitro. A detailed experimental evaluation between the nanocomposite coatings was carried out to shed light on the effect of ZnO and Gr nanoparticles on the properties.
It was found that the nanocomposite contained 1% ZnO and 1% graphene with a Young's modulus of 1540.5 ± 169.426MPa and the pure sample had a Young's modulus of 1194.81±215.342MPa. The rate of elongation at break of the nanostructure contained 1% graphene was 5.1±0.816%. This value was 3.8±0.944% for the pure sample. The improvement in elongation at break is due to the presence of polycaprolactone in the polymer matrix. The optimal sample with 1% zinc oxide and 1% graphene had antibacterial properties more than other samples. Also, the survival rate of fibroblasts cell in the vicinity of the optimal matrix was significantly different from other samples.
The obtained results revealed that the incorporation of the nanoparticles improved physico-chemical features and mechanical strength with enhanced biological properties and its anti-bacterial performance makes this material a promising candidate for further bone regeneration studies.
 

Seyed Farzad Dehghaniyan, Shahriar Sharafi,
Volume 21, Issue 2 (June 2024)
Abstract

Mechanical alloying was employed to synthesize a nanostructured alloy with the chemical formula of (Fe80Ni20)1-xCrx (x= 0, 4). The microstructural and magnetic properties of the samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and a vibrating sample magnetometer (VSM). Additionally, theoretical calculations were performed using density functional theory (DFT) under the generalized gradient approximation (GGA). Simulations have demonstrated that an appropriate quantity of chromium (Cr) can dissolve within the BCC-Fe (Ni) structure, resulting in a favorable enhancement of the magnetic moment of the lattice. The XRD results indicated that after 96 hours of milling, Fe (Ni) and Fe (Ni, Cr) with a body-centered cubic (BCC) structure were formed. With increasing milling time, the grain size decreased while the microstrain increased. The saturation magnetization (Ms) of Fe80Ni20 composition increased up to 32 hours of milling, but further milling (up to 96 h) resulted in a decrease in the saturation magnetization However, for the (Fe80Ni20)96Cr4 powders, milling up to 64 h caused a reduction in Ms. The coercivity (Hc) trend was different and increased with longer milling times (up to 96 h) for both compositions.
 

Ramin Dehghani, Seyed Mojtaba Zebarjad,
Volume 21, Issue 3 (September 2024)
Abstract

Acrylic resins are one of the most important thermoplastic resins used in various industries due to their significant properties. However, they are inherently brittle and addition plasticizers to them is very common. In this study, role of both Polyethylene Glycol (PEG) and Triacetin on the mechanical properties of acrylic resin have been investigated. To do so tensile test, bending and wear tests have been performed. To achieve the optimal mixture of plasticizers, a tensile test has been carried out, and the best percentage of the mixture has been determined. Subsequently, bending and wear tests were conducted, which showed a significant increase in the bending strength of the acrylic resin after the addition of plasticizers. Furthermore, it was found that the abrasion mechanism of the resin was significantly altered compared to its pure state.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb