Search published articles


Showing 3 results for Pourabdoli

N. Ghanbarpourabdoli, Sh. Raygan, H. Abdizadeh,
Volume 13, Issue 4 (December 2016)
Abstract

In this study, the adsorption of hexavalent chromium and zinc ions from the solution is investigated by raw red mud and mechanical-chemical activated red mud along with the possibility of selective reclamation of these ions from the solution. The mechanical-chemical activation of red mud was done by employing high-energy milling and subsequent acid treatment with HNO3. Raw red mud (RRM) and mechanical-chemical activated red mud (MCARM) adsorbents were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer–Emmett–Teller (BET) methods. In order to determine the suitable adsorption conditions, effects of pH of the solution, amount of adsorption, temperature, and time of adsorption were investigated. It was found that the optimum pH for the adsorption of hexavalent chromium and zinc ions by MCARM adsorbent was 2 and 6, respectively. According to these pH values, MCARM had the ability to separately adsorb more than 95 and 79% of hexavalent chromium and zinc ions from the solution, respectively. Experimental results were in good agreement with Langmuir and Freundlich isotherms. By considering the kinetic models of adsorption, the kinetics of the adsorption of both ions followed the pseudo-second-order reaction model. It was also determined that almost 25.8 and 61.8% of the hexavalent chromium and zinc ions adsorbed in MCARM could be recovered


E. Mohammadi, M. Pourabdoli,
Volume 16, Issue 2 (June 2019)
Abstract

The effect of mechanical activation on the kinetics of ammoniacal thiosulfate leaching of a refractory oxide gold ore containing 2.8 ppm Au was investigated. The gold extraction of 99.81% was achieved by 16 h leaching of a sample mechanically activated for 60 minutes. The gold extraction observed for a similar reference sample without mechanical activation was only 55%. Studies revealed that leaching progresses at two different rates depending on the leaching time (0-2 h and 2-16 h). It was observed that diffusion through an ash layer as a dominant mechanism controls the leaching of samples mechanically activated up to 45 minutes during total leaching time, while reaction control and liquid film diffusion are dominant mechanisms for leaching of a sample mechanically activated for 60 minutes during 0-2 h and 2-16 h, respectively. The extraction observed during the ash diffusion step depends significantly upon mechanical activation time.  Mechanical activation of 60 minutes results in high gold extraction in this step which when combined with subsequent chemical reaction gives close to 100% gold extraction in a 16 hour leach.  Mechanical activation for up to 45 minutes leads to a modest improvement in overall gold extraction compared with the reference test without mechanical activation

A. Hasanvand, M. Pourabdoli, A. Ghaderi,
Volume 17, Issue 1 (March 2020)
Abstract

The main problem of cobalt oxide as a thermochemical heat storage material is its slow re-oxidation kinetics. In addition, redox (reduction and oxidation) behavior of as-received Co3O4 is degraded with increasing the number of redox cycles. To overcome this drawback, Al2O3 and Y2O3 were added to Co3O4 and  effect of mechanical activation time (2, 4, 8, and 16 h) on the redox behavior (weight change value/rate, redox reversibility, reduction and re-oxidation values, and particle morphologies) of Co3O4-5 wt.% Al2O3 and Co3O4-5 wt. % Y2O3 composites was investigated using thermogravimetry method. The composites were studied by SEM, EDS, and X-ray map analyses before and after redox reactions. Results showed that increasing the mechanical activation time improves the redox kinetics of Co3O4-5wt. % Al2O3 in comparison with as-received Co3O4. Although, the alumina-containing samples, activated in short time showed the better redox kinetics than samples activated in long time. It was found that increasing the activation time to more than 8 h for alumina-containing samples reduces the redox kinetics due to decreasing the positive effect of Al2O3 in controlling the particle size growth and sintering. In the case of Co3O4-5wt. % Y2O3, an increase in activation time generally reduced the redox kinetics. As a result, redox reactions in a 16 h-activated Co3O4-5wt.% Y2O3 composite was completely stopped. In addition, results showed that weak performance of Co3O4-5 wt. % Y2O3 is related to intensive sintering and growth of cobalt oxide particles during redox reactions


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb