Search published articles



Y. Kianinia, A. K. Darban, E. Taheri-Nassaj, B. Rahnama, A. Foroutan,
Volume 12, Issue 1 (3-2015)
Abstract

A method for producing high surface area nano-sized mesoporous alumina from inexpensive Iranian kaolin as raw material is proposed. In this method, first, kaolin was purified for purifying Kaolin, High Grade Magnetic Separation and leaching with HCl and chemical bleaching treatment by using sodium dithionite (Na 2 S 2O4 ) as reducing agent in acidic media (H 2SO 4 ) were used. Purified kaolin was calcined. After that, Al (hydr) oxide from acid -leachates of calcined kaolin was precipitated with ammonia, in presence of polyethylene glycol. Finally, a white powder of nano-sized alumina particles was obtained after calcination. BET surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to characterize the sample. The resulting alumina with relatively high surface area (201.53 m 2 g -1 ) and narrow mean pore diameter (6.91 nm), consists of a particle size distribution ranging from 22 to 36 nm.
M. Heydari Nasab, R. Naghizadeh, H. Samadi, A. Nemati,
Volume 12, Issue 1 (3-2015)
Abstract

Ceramic-matrix composites containing TiC-TiN have been used in a variety of application because of their superior properties such as high hardness, good wear resistance and high chemical stability. In this research, effect of coke and coke/calcium beds in synthesis of Al 2O3-Ti(C, N) composites using alumino-carbothermic reduction of TiO 2 has been investigated. Al, TiO 2 and active carbon with additives of extra carbon and NaCl and without additives, in separate procedures, have been mixed. Afterwards, mixtures were pressed and synthesized in 1200oC for 4hrs, in coke and coke/calcium beds, separately. Al 2O3-Ti(C,N) composite was synthesized in ternary system of Al-TiO 2 -C with excess carbon and NaCl additives in calcium/coke bed in 1200 . X-ray diffraction patterns (XRD) results showed that existence of calcium in bed resulted in intensification of reduction atmosphere in samples and formation of Ti(C,N) phase enriched from carbon was accelerated. Crystallite sizes of synthesis Ti(C,N) at 1200 °C in reducing conditions were 22-28 nm.
V. Mote, B. Dole,
Volume 12, Issue 1 (3-2015)
Abstract

Mn doped ZnO nanocrystals were prepared by co-precipitation route sintered at 450 °C temperature. XRD results indicate that the samples having hexagonal (wurtzite) structure. From X-ray data it is found that the lattice parameters increase with increasing Mn concentration. The X-ray density decreases with increasing Mn concentration of Zn 1-x Mnx O nanocrystals. It indicates that the Mn ions go into the Zn site in the ZnO lattice structure. TEM results reveal that the pure and Mn substituted ZnO samples are spherical in shape with average particle size about 20-60 nm. The crystalline size and lattice strain were evaluated by Williamson-Hall (W-H) analysis using X-ray peak broadening data. All other relevant physical parameters such as strain, stress and energy density were calculated by the different models Viz, uniform deformation model (UDM), uniform deformation stress model (UDSM) and Uniform deformation energy density model (UDEDM) considering the Williamson-Hall analysis. These models reveal different strain values it may be due to the anisotropic nature of the material. It is found that the mean particle size of Zn 1-x MnxO nanoparticles was estimated from TEM analysis, Scherrer’s formula & W-H analysis is highly comparable
E. Shaker, M. Sakaki, M. Jalaly, M. Bafghi,
Volume 12, Issue 4 (12-2015)
Abstract

B4C–Al2O3 composite powder was produced by aluminothermic reduction in Al/B2O3/C system. In this research, microwave heating technique was used to synthesize desired composite. The ball milling of powder mixtures was performed in order to study the effect of mechanical activation on the synthesis process. The synthesis mechanism in this system was investigated by examining the corresponding binary sub-reactions. The self-sustaining reduction of boron oxide by Al was recognized to be the triggering step in overall reaction.


A. M. Zahedi, H. R. Rezaie, J. Javadpour,
Volume 12, Issue 4 (12-2015)
Abstract

Different volume fractions (1.3, 2.6, and 7.6 Vol.%) of carbon nanotubes (CNTs) were dispersed within 8Y-TZP nanopowders. Mixed powder specimens were subsequently processed by spark plasma sintering (SPS) and effects of CNTs on the sintering process of 8Y-TZP/CNT composites was studied. Maintenance of CNTs through the SPS process was confirmed using TEM and Raman Spectroscopy. Studies on the sintering profile of zirconia-CNT composites (Z-xC composites) could, to some extent, clarify the effect of CNTs’ volume fraction on the densification rates of Z-xC composites. The specimen with the highest content of CNT (Z-7.6C) showed the lowest sintering rate while it was unable to reach full density.

\"AWT


R. Sarjahani, M. Sheikhattar, S. Javadpour, B. Hashemi,
Volume 13, Issue 1 (3-2016)
Abstract

Surface smoothness of ceramic glazes is always an important characteristic of ceramic glazes as a point of surface engineering studies. Surface roughness affects chemical resistivity, glossiness and stainabiliy of glazes. In fact, less surface roughness improves cleanability of the surface by the least usage amount of detergents. In this investigation, surface topography of two common opaque glazes, zirconia and titania-based, has been investigated. Crystallinity of the surface has been studied from SEM images, and comparison of EDS elemental results with phase analysis results of XRD. Surface roughness profile measured by Marsurf M300, shows that titania-based glaze is almost 24% percentage more smooth than zirconia based glaze. Surface smoothness is in relation with crystallinity of glaze surface, crystal type and crystal distribution in amorphous matrix phase

AWT IMAGE


S. Alamolhoda, S. M. Mirkazemi, T. Shahjooyi, N. Benvidi,
Volume 13, Issue 1 (3-2016)
Abstract

Nano-sized NiFe2O4 powders were synthesized by sol–gel auto-combustion method using pH values from 7 to 9 in the sol. The effect of pH variations on complexing behavior of the species in the sol has been explained. Changes in phase constituents, microstructure and magnetic properties by changes in pH values were evaluated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. Changes in pH value from 7 to 9 changes the amounts of NiFe2O4, FeNi3 and α-Fe2O3 phases. Calculated mean crystallite sizes are in the range of 44 to 51nm. FESEM micrographs revealed that increasing the pH value to 9 causes formation of coarse particles with higher crystallinity. Saturation magnetization was increased from 36.96emu/g to 39.35emu/g by increasing pH value from 7 to 8 which is the result of increased FeNi3 content. Using higher pH values in the sol reduces the Ms value.

AWT IMAGE


F. Torknik, M. Keyanpour-Rad, A. Maghsoudipour, G. M. Choi,
Volume 13, Issue 1 (3-2016)
Abstract

In order to further enhance the Ni/Ce 0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance for low temperature solid oxide fuel cell (LT-SOFC), a study was conducted on the nanostructuring of NiO/GDC composite by only once wet-infiltration of rhodium chloride precursor. By using electrochemical impedance spectroscopy (EIS) analysis, the effect of only one drop of Rh-infiltrating solution on the anodic polarization resistance was examined using symmetric Ni–GDC20|GDC20|Pt electrolyte-supported cell at 400-600 °C. Nanostructural evolution before and after H 2 reduction at 600 °C and also after anodic performance test was investigated by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques in comparison to the anode itself. Despite the fine distribution of Rh-infiltrated nanoparticles having average particle size of 11.7 nm, the results showed ineffectiveness and inability of the Rh nanoparticles to succeed in decreasing of anodic polarization resistance for H 2 oxidation reaction in LT-SOFC.

AWT IMAGE


A. Moosavi, M. A. Bahrevar, A. R. Aghaei,
Volume 13, Issue 1 (3-2016)
Abstract

An actuator is a device that converts input energy into mechanical energy. According to various types of input energy, various actuators have been advanced. Displacement in the electromagnetic, hydraulic and pneumatic actuators achieve by moving a piston via electromagnetic force or pressure, however the piezoelectric actuator (piezoceramic plates) displace directly. Therefore, accuracy and speed in the piezoelectric device are higher than other types of actuators. In the present work, the high-field electromechanical response of high-quality (1−x)(Bi 0.5Na0.5)TiO3–x(Bi0.5K0.5)TiO3 samples abbreviated to BNKTx with x = 0.18, 0.20, 0.22 and 0.24 ceramic materials across its MPB was investigated. The piezoelectrics and actuation characteristics were characterized. Ourresults indicate that x = 0.20, indeed, constitutes the best choice for the MPB composition in the system. Maximum of remanent polarization (37.5 μC cm−2) was obtained for x=0.20. High-field electromechanical responses were also obtained for BNKT0.20 samples. This material exhibited giant field induced strains of 0.13% under 1 kV mm -1 at room temperature.

AWT IMAGE


H. R. Sobhani Kavkani, A. Mortezaei, R. Naghizadeh,
Volume 13, Issue 2 (6-2016)
Abstract

Different mineral admixtures of Indian metakaolin, Iranian silica fume and nanosilica were used to produce high performance mortars. Two different sands types with grain size of 0.015-4mm were mixed with type II Portland cement, polycarboxylate superplasticizer,mineral admixture with 650kg/m3 cement content and water/cement ratio of 0.35. Different amount of cement was replaced by metakaolin or silica fume (5-15wt%) or nanosilica (0.8-5wt%). After mixing, moulding and curing, compressive strength, electrical resistivity and abrasion resistance were studied. The maximum compressive strength of 28 days samples were 76MPa, 79MPa and 75MPa for 15wt% substitution of cement with metakaolin, silica fume and 5wt% with nanosilica. The compressive strength of these samples showed 28%, 33% and 26% increment in comparison with reference sample, respectively. X-ray patterns showed that replacing silica fume leads to reduction of Portlandite (Ca(OH)2) phase. This can be attributed to the pozzolanic reaction and formation of new hydrated calcium silicate phase (CSH) that caused improvement of strength of admixtures containing samples. The microstructure of silica fume containing sample also showed better bond between sand and matrix. The electrical resistivity of samples with 15wt% metakaolin or silica fume and 5wt% nanosilica reach to 21kΩ.cm, 15 kΩ.cm and 10kΩ.cm, respectively. These samples showed high durability and corrosion resistance relative to reference samples (3.4 kΩ.cm). The abrasion resistance of different admixtures, specially silica fume containing samples were improved.

AWT IMAGE


A. Izadpanahi, S. Baghshahi, A. Shalbaf Zadeh,
Volume 13, Issue 3 (9-2016)
Abstract

In the following research, Lead magnesium niobate relaxor ferroelectric (PMN-PZT) ceramic powders were synthesized using the combustion method grand urea as the fuel for the first time. The starting materials used were lead nitrate, magnesium acetate, niobium oxide, zirconium nitrate, titanium oxide.

    The raw materials were first mixed using the general formula of (1-x)Pb(Mg1/3Nb2/3)O3-xPb(Zr0.52Ti0.48)O3, with  x=0.3. The synthesized powders were characterized using XRD, SEM and FTIR spectroscopy techniques. The X-ray diffraction patterns revealed that the structure of the prepared samples were tetragonal at 500,600,700 and 800 oC. However, the monoclinic phase was detected in the samples calcined at 800 oC and the amount of pyrocholore phase also drastically decreased at this temperature. The band gap widths of the samples were measured via UV spectroscopy in the wave number range of 400-4000cm-1. The results show that by increasing the calcination temperature, the band gap width of the prepared samples decreases. SEM micrographs verify that by rising the calcination temperature, the structure of the prepared samples becomes more homogenous.


S. Ghasemi-Kahrizsangi, H. Gheisari-Dehsheikh, M. Boroujerdnia,
Volume 13, Issue 4 (12-2016)
Abstract

In this study the effect of nano meter size ZrO2 particles on the microstructure, densification and hydration resistance of magnesite –dolomite refractories was investigated. 0, 2, 4, 6 and 8 wt. % ZrO2 particles that were added to magnesite –dolomite refractories containing 35 wt. % CaO. The Hydration resistance was measured by change in the weight of specimens after 72 h at 25℃ and 95% relative humidity. The results showed with addition of nano meter size ZrO2 particles, the lattice constant of CaO increased, and the bulk density and hydration resistance of the specimens increased while apparent porosity decreased. With the addition of small amount ZrO2 the formation of CaZrO3 phase facilitated the sintering and the densification process. The mechanism of the nano meter size ZrO2 particles promoting densification and hydration resistance is decreasing the amount of free CaO in the specimens.


F. Sakhaei, E. Salahi, M. Eolya, I. Mobasherpour,
Volume 13, Issue 4 (12-2016)
Abstract

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO) has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.


N. Maskani, R. Naghizadeh, A. Mirhabibi, H. Rezaie,
Volume 14, Issue 1 (3-2017)
Abstract

The synthesis of micro-sized, uniformly distributed Al2O3-15Vol% Ni powders were studied through three step co-precipitation of hydroxides mixtures from proper solution, calcination at air atmosphere and final step of calcined powders in a carbon bed. Al and Ni hydroxide and amorphous phase were first obtained from their salt’s solutions through chemical co-precipitation method by adjusting pH. The precipitated powders were then calcined to obtain a mixture of their oxides as NiO and NiAl2O4 which were reduced in a carbon bed at various temperatures up to 1300. Proper temperature for calcination in air was determined through TG analysis; 900. SEM observation of powders after reduction, revealed micro-sized Ni particles, along with fin distribution of Ni and Al2O3 elements. XRD analysis of the calcined sample showed the presence of NiAl2O4 and NiO and the same analysis for the reduced sample confirmed the formation of Al2O3 and Ni.    


M. Nouri, P. Alizadeh, M. Tavoosi,
Volume 14, Issue 3 (9-2017)
Abstract

In this study, the crystallization behavior of a 65GeO2-15PbO-10MgF2-10MgO glass (prepared by the conventional melt quenching technique) has been investigated. The microstructure and crystallization behaviors of this glass were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), non-isothermal differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that a fully glassy phase can successfully be prepared by the conventional melt quenching technique exhibiting one-stage crystallization on heating, i.e., the glassy phase transforms into crystalline MgGeO3 and Pb5GeO7 phases. The activation energy for the crystallization, evaluated from the Kissinger equation, was approximately 202±5 kJ/mole using the peak temperature of the exothermic reaction. The Avrami exponent or reaction order, n, indicates the nucleation rate in this glass to increase with time and the crystallization to be governed by a three-dimensional interface-controlled growth.


G. Maghouli, B. Eftekhari Yekta,
Volume 15, Issue 1 (3-2018)
Abstract

Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt.
Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness and chemical resistance of both glass and glass-ceramic searies were also determined.
According to our results, lithium phosphate was precipitated prior to crystallization of the main phases, i.e lithium meta silicate and lithium disilicate. This early precipitation led to evacuation of residual glass phase from lithium ions, which caused increasing the viscosity of glass and so shifting of crystallization to higher temperatures.
In addition, increasing in P2O5 amounts and consequently increasing in Li3PO4, led to significant decrease in the crystallite size and aspect ratio  of crystals.
Furthermore, while the chemical resistance of the glasses was decreased with P2O5, it was increased with P2O5 after heat treatment process.
The chemical solubility of these three glass-ceramics was between 2080~1188 μg/cm2.

M. Krishna, R. Nandini, A.v. Suresh, K. Narasimha Rao ,
Volume 15, Issue 2 (6-2018)
Abstract

An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichiometric in nature. The obtained nano particles showed phase transition from orthorhombic to tetragonal crystal structure without any secondary phases. The high relative density and tetragonality ratio of KNN ceramics obtained through optimized sintering parameters yielded with significant piezoelectric and ferroelectric properties.
 

F. Salehtash, H. Banna Motejadded Emrooz, M. Jalaly,
Volume 15, Issue 2 (6-2018)
Abstract

Mesoporous SiO2 nanopowder was synthesized under an acidic condition by a sol-gel method using various amounts of cetyltrimethyl ammonium bromide (CTAB) as structure directing agent. The samples were investigated with XRD, SEM, FTIR, TEM and N2 absorption-desorption analysis. Also, the incremental effect of surfactant were examined. The results obtained from the analysis suggested that an increase in the amount of surfactant resulted in increasing specific surface area, pore size and pore volume, of the synthesized particles up to 549 m2.g-1, 17.3 nm, and 2 cm3.g-1, respectively. Absorption behavior of the mesoporous silica was investigated for degradation of methylene blue pigments (MB) in aqueous solutions. The samples SC0, SC0.5 and SC1 showed the maximum absorption capacities of 333, 454 and 526 mg/g, respectively
M. R. Ghaani, P. Marashi,
Volume 15, Issue 3 (9-2018)
Abstract

Na super ionic conductive (NASICON) materials are ceramics with three-dimensional scaffolds. In this study, Li1.4Al0.4Ti1.6(PO4)3 with NASICON structure was synthesized by Pechini method. As a result, a sample having a total conduction of 1.18×10-3 S cm-1 was attained. In addition, various parameters were studied to obtain high value of conductivity, by optimizing the process. The optimization was made using L16 Taguchi based orthogonal array, followed by ANOM, ANOVA and stepwise regression. As a result, the optimum synthesis parameters can be obtained, while pH of the solution was adjusted to 7. The ratio between the concentration of citric acid to metal ions and ethylene glycol concentration stuck to 1 and 2.5, respectively. The best heat treatment can be carried out with a combination of pyrolysis at 600 ºC and sintering at 1000 ºC. 
N. Maragani, K. Vijaya Kumar,
Volume 15, Issue 4 (12-2018)
Abstract

An attempt has been focused to develop a new aluminum ion conducting non aqueous polymer electrolyte for high power rechargeable batteries having applications in rapidly growing markets, such as laptops, handy tele communication equipments, electric vehicles, camcorders, etc. These features have given a thrust to develop a suitable Nano composite GPE based on  PAN as polymer host and Sodium fluoride (NaF) as dopant salt and Al2O3 as nano filler in the form of thin films through solution casting technique consuming N,N-dimethyl formamide (DMF) as a common solvent. NCGPE films have been prepared by solution casting technique. The XRD pattern of 70PAN-30NaF with addition of wt% Al2O3 ceramic filler indicates reducing degree of crystallinity. Using IR studies revealed that the complexation of the polymer poly (acrylonitrle) with NaF. The conductivity of the GPEs was studied with enhancement of nano fillers. The sample containing 3% of Al2O3 exhibits the highest conductivity of 4.82x10-3S cm-1 at room temperature (303K) and 5.96x10-3S cm-1 at 378K. With the help of Wagner’s polarization technique electronic (te) and ionic (ti) values can be determined.To determine profiles of discharge characteristics (70PAN-30NaF-3wt% Al2O3) NCGPE solid-state electrochemical cell was fabricated and various cell profiles were evaluated


Page 6 from 8     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb