Showing 4 results for Combustion Synthesis
S.h.r. Fatemi Nayeri, J. Vahdati Khaki, M. R. Aboutalebi,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract:A combination of mechanical activation and Differential Thermal Analysis (DTA) together with X-Ray
Diffraction (XRD), and various microstractural characterization techniques were used to evaluate the starting reaction
in the combustion synthesis of TiC-Al2O3 composite in TiO2-Al-C system. The mechanical activation was performed
on the mixtures of two components of TiO2/Al, Al/C and TiO2/C and then the third component was added according
to the stoichiometric reaction for 3TiC+2Al2O3 composite formation. The powder mixtures were heated up to 1450 °C
under Argon atmosphere at a heating rate of 10 °C/min. The combustion synthesis temperature was observed to
decrease from 962 °C to 649 °C after milling of TiO2/Al mixture for 16 hr. On the contrary, the mechanical activation
of Al/C and TiO2/C mixtures for 16 hr made the reaction temperature increase to 995 °C and 1024 °C, respectively.
The decrease in reaction temperature as a result of milling the TiO2/Al mixture could be due to an increase of TiO2
and Al interface area as confirmed by TEM micrographs and XRD patterns of milled powder mixture. In addition, DTA
experiments showed that for the sample in which TiO2 and Al were mechanically activated the reaction occurred at
the temperature even lower than that of Al melting point.
M. Adeli, M. Shekari, S. H. Seyedein, M. R. Aboutalebi,
Volume 7, Issue 2 (6-2010)
Abstract
Combustion synthesis is a special thermophysico-chemical process applied for production of intermetallic compounds. In the present work, a reaction–diffusion numerical model was developed to analyze the combustion synthesis of aluminide intermetallics by self-propagating high-temperature synthesis process. In order to verify the reliability of the numerical model, an experimental setup was designed and used to perform the combustion synthesis of nickel and titanium aluminides. The developed model was further used to determine the temperature history of a powder mixture compact during self-propagating high-temperature synthesis. The effect of compact relative density on combustion temperature and wave propagation velocity was also studied.
R. Taherzadeh Mousavian, S. Sharafi, M. H. Shariat,
Volume 8, Issue 2 (6-2011)
Abstract
Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, and boric acid were used as the starting materials to fabricate an Al2O3-TiB2 ceramic composite. After mechanical activation and thermal explosion processes, intensive milling was performed for 5, 10, and 20h to assess the formation of a nano-structural composite. The X-ray phase analysis of the as-synthesized sample showed that considerable amounts of the remained reactants incorporated with the TiO phase were present in the XRD pattern. The results showed that the average crystallite size for alumina as a matrix were 150, 55 and 33 nm, after 5h, 10h, and 20h of intensive milling, respectively. The SEM microstructure of the as-milled samples indicated that increasing the milling duration after combustion synthesis causes a significant reduction in the particle size of the products, which leads to an increase in the homogeneity of particles size. A significant increase in the microhardness values of the composite powders was revealed after intensive milling process.
S. Ghafurian, S. H. Seyedein, M. R. Aboutalebi, M. Reza Afshar,
Volume 8, Issue 3 (9-2011)
Abstract
Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds and
composites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In this
study, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by the
development of a heat transfer model including a microwave heating source term. The model was tested and verified
by experiments available in the literature. Parametric studies were carried out by the model to evaluate the effects of
such parameters as input power, sample aspect ratio, and porosity on the rate of process. The results showed that
higher input powers and sample volumes, as well as the use of bigger susceptors made the reaction enhanced. It was
also shown that a decrease in the porosity and aspect ratio of sample leads to the enhancement of the process.