Showing 5 results for Glass-Ceramic
G. Maghouli, B. Eftekhari Yekta,
Volume 15, Issue 1 (3-2018)
Abstract
Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt.
Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness and chemical resistance of both glass and glass-ceramic searies were also determined.
According to our results, lithium phosphate was precipitated prior to crystallization of the main phases, i.e lithium meta silicate and lithium disilicate. This early precipitation led to evacuation of residual glass phase from lithium ions, which caused increasing the viscosity of glass and so shifting of crystallization to higher temperatures.
In addition, increasing in P2O5 amounts and consequently increasing in Li3PO4, led to significant decrease in the crystallite size and aspect ratio of crystals.
Furthermore, while the chemical resistance of the glasses was decreased with P2O5, it was increased with P2O5 after heat treatment process.
The chemical solubility of these three glass-ceramics was between 2080~1188 μg/cm2.
P. Shahsavari, B. Eftekhari Yekta, V. Marghussian,
Volume 17, Issue 3 (9-2020)
Abstract
Strong glass-ceramic foams with a compressive strength of 20 MPa were prepared by adding various amounts of Fe2O3 to a soda lime-based glass composition, and SiC as a foaming agent. The foams were prepared by firing the compacted samples in the range of 750–950°C for different soaking times. The crystallization behavior of the samples was investigated by Simultaneous Thermal Analysis (STA), Scanning Electron Microscope, and X-Ray Diffractometer (XRD). Based on the results, solid solutions of pyroxene groups were crystallized by the surface mechanism, between 730˚C and 900˚C during the firing of the specimens, and their amounts increases with increasing of the added iron oxide. Besides, we found that Fe2O3 neither acts as a nucleant for pyroxene nor as an oxidizer for SiC. The results also showed that the compressive strength as well as the crystallization behavior of the foams was influenced by the presence of the SiC particles.
Parisa Rastgoo Oskoui, Mohammad Rezvani, Abbas Kianvash,
Volume 20, Issue 2 (6-2023)
Abstract
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Zahra Shamohammadi Ghahsareh, Sara Banijamali, Alireza Aghaei,
Volume 20, Issue 2 (6-2023)
Abstract
Various analysis techniques were used to investigate the effects of P2O5 on the crystallization, mechanical features, and chemical resistance of canasite-based glass-ceramics. The results showed that canasite-type crystals were the primary crystalline phase in the examined glass-ceramics subjected to the two-step heat treatment, while fluorapatite was the secondary crystalline phase in some specimens. The microstructural observations by field emission electron microscope indicated that the randomly oriented interlocked blade-like canasite crystals decreased with an increase in the P2O5 content of the parent glasses. Among the examined glass-ceramics, the Base-P2 composition (containing 2 weight ratios of P2O5 in the glass) showed the most promising mechanical features (flexural strength of 176 MPa and fracture toughness of 2.9 MPa.m1/2) and chemical resistance (solubility of 2568 µg/cm2). This glass-ceramic could be further considered as a core material for dental restorations.
Ahad Saeidi, Sara Banijamali, Mojgan Heydari,
Volume 21, Issue 2 (6-2024)
Abstract
This study explores the fabrication, structural analysis, and cytocompatibility of cobalt-doped bioactive glass scaffolds for potential applications in bone tissue engineering. A specific glass composition modified from Hench's original formulation was melted, quenched, and ground to an average particle size of 10 μm. The resulting amorphous powder underwent controlled sintering to form green bodies and was extensively characterized using simultaneous differential thermal analysis (DTA), Raman spectroscopy, and Fourier Transform Infrared analysis (FTIR). After mixing with a resin and a dispersant, the composite was used in digital light processing (DLP) 3D printing to construct scaffolds with interconnected macropores. Thermal post-treatment of 3D printed scaffolds, including debinding (Removing the binder that used for shaping) and sintering, was optimized based on thermogravimetric analysis (TG) and the microstructure was examined using FE-SEM and XRD. In vitro bioactivity was assessed by immersion in simulated body fluid (SBF), while cytocompatibility with MC3T3 cells was evaluated through SEM following a series of ethanol dehydrations. The study validates the fabrication of bioactive glass scaffolds with recognized structural and morphological properties, establishing the effects of cobalt doping on glass behavior and its implications for tissue engineering scaffolds. Results show, Low cobalt levels modify the glass network and reduce its Tg to 529 oC, while higher concentrations enhance the structure in point of its connectivity. XRD results shows all prepared glasses are amorphous nature, and DTA suggests a concentration-dependent Tg relationship. Spectroscopy indicates potential Si-O-Co bonding and effects on SiO2 polymerization. Cobalt's nucleating role promotes crystalline phases, enhancing bioactivity seen in rapid CHA layer formation in SBF, advancing the prospects for bone tissue engineering materials.