Search published articles


Showing 4 results for Plastic Deformation

Saghafian Larijani H., Rainforth W. M.,
Volume 1, Issue 3 (9-2004)
Abstract

An AI-7wt%Si-5vol%TiCp was worn against a cast iron disc in a tri-pin-on-disc machine, under dry sliding conditions at the sliding speed of 0.24 m/s and applied loads of 6, 20 and 40 N/pin. Stress-strain (σ-ε) curves were constructed by measuring the microhardness and the equivalent strain gradients in near surface regions on the cross-sectional surface prepared parallel to sliding direction.It was shown that, both the magnitude of plastic strains and the depth of plastic deformed zones increased with the applied load. The material exhibited considerable work softening in addition to work hardening at the highest applied load. The softened layer placed just beneath the mechanical mixed layer (MML), was mostly covered with the fine fractured eutectic Si and TiC fragments most of which were associated with microcracks at Al/Si and Al/TiC interfaces. The results were discussed in terms of some of the current work hardening models.
B. Tolaminejad, A. Karimi Taheri, H. Arabi, M. Shahmiri,
Volume 6, Issue 4 (12-2009)
Abstract

Abstract: Equal channel angular extrusion (ECAE) is a promising technique for production of ultra fine-grain (UFG) materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to ECAE process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through ECAE die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of ECAE throughout the four consecutive passes and then it is slightly decreased when more ECAE passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. It was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a ECA-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the ECAE of the laminated composite compared to those of a single billet
M. Kadkhodaee, H. Daneshmanesh, B. Hashemi, J. Moradgholi,
Volume 11, Issue 1 (3-2014)
Abstract

Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycles of ARB process, the tribological properties and wear resistance of produced nanocomposites were investigated. The wear tests by abrasion were performed in a pinon-disc tribometer. Results show that by increasing ARB cycles and the amount of nano powders, the friction coefficient of produced nanocomposites decreases.
H. Torabzadeh Kashi, M. Bahrami, J. Shahbazi Karami, Gh. Faraji,
Volume 14, Issue 2 (6-2017)
Abstract

In this paper, cyclic flaring and sinking (CFS) as a new severe plastic deformation (SPD) method was employed to produce the ultrafine grain (UFG) copper tubes. The extra friction has eliminated in the CFS method that provided the possibility for production of longer UFG tubes compared to the other SPD methods. This process was done periodically to apply more strain and consequently finer grain size and better mechanical properties. The CFS was performed successfully on pure copper tubes up to eleven cycles. Mechanical properties of the initial and processed tubes were extracted from tensile tests in the different cycles. The remarkable increase in strength and decrease in ductility take placed in the CFS-ed tubes. The material flow behavior during CFS processing was analyzed by optical microscopy (OM), and a model was presented for grain refinement mechanism of pure copper based on multiplication and migration of dislocations (MMD). This mechanism caused that the initial grains converts to elongated dislocation cells (subgrains) and then to equiaxed ultrafine grains in the higher cycles. The CFS method refined the microstructure to fine grains with the mean grain size of 1200nm from initial coarse grain size of 40µm



Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb