Showing 12 results for Powder
Ghobeiti Hasab M., Seyyed Ebrahimi S.a., Badaee A.,
Volume 2, Issue 2 (6-2005)
Abstract
In this research the sol-gel auto-combustion method was used to prepare strontium hexaferrite nanopowder. A solution of distilled water, ferric and strontium nitrates, citric acid, trimethylamine, and n-decyltrimethylammonium bromide cationic surfactant, was heated to form a viscous gel. The gel was heated and then ignited automatically. As-burnt powder was calcined at temperatures from 700 to 900?C in air to obtain SrO.6Fe2O3 phase. The influence of the calcination temperature on the phase composition of the products has been investigated. X-ray diffraction confirmed the formation of single-phase strontium hexaferrite nanopowder at temperature of 800?C.
A. Nemati, K. Pourazarang,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: The PZT-based ceramics with a composition of Pb1.1-xLax (Zr0.53Ti0.47)O3, were prepared
by conventional mixed oxide followed by mechanical alloying and sol-gel methods in which x was
chosen in the range of 0.02–0.06. The samples were calcined in the range of 450 °C - 750 °C for
4h. The physical and electrical properties of the samples were determined as a function of the
calcination temperature. The obtained data from two methods were compared with conventional
mixed oxide method. Microstructural and compositional analyses of the samples were carried out
using XRD and SEM. Dielectric properties of the samples were measured with an impedance
analyzer. The ferroelectric properties of the PZT and PLZT samples were measured using the
frequencies applying equipment and d33 tester. The results indicated a complete tetragonal phase
prepared from both methods. It was shown that the addition of La and reduction in calcination
temperature improved both the dielectric and piezoelectric properties. The dielectric constant
tended to increase with doping content, giving the maximum value of about 2000 at 3 mol% La3+.
In addition, the mechanical coupling factor (Qm) of the doped samples showed a significant
decrease. Finally, the value of planar coupling factor (kp) reached the maximum value of 0.47 at 1
mol% La3+.
S. H. Razavi, Sh. Mirdamadi, M. M. Hormozi,
Volume 8, Issue 1 (3-2011)
Abstract
Abstract: The aim of the present investigation is to study the physical and mechanical characteristics of dental-filling spherical high-copper and silver amalgams and to compare them with a common high-copper domestic unicompositional amalgam. In this study, cylindrical specimens were mechanically condensed according to the ISO 1559:1986 Standard in order to measure the compressive strength, Vickers hardness, static creep and dimensional change on setting. Adding more silver to the amalgam increased its compressive strength, creep resistance and reduced mercury vapor. After 1, 24 and 168h of amalgamation and Modulus of elasticity of specimen S1, the mean hardness and compressive fracture strength were significantly lower than those of . No significant differences were identified for the two alloys in the creep and dimensional changes on setting. It can be concluded that as far as the mechanical properties or corrosion resistance is concerned, the amalgam should be comprised of at least one spherical alloy.
A. Najafi, F. Golestani-Fard, H. R. Rezaie, N. Ehsani,
Volume 8, Issue 2 (6-2011)
Abstract
Abstract: SiC nano particles with mono dispersed distribution were synthesized by using of silicon alkoxides and phenolic resin as starting materials. After synthesis of sample, characterizations of the obtained powder were investigated via Fourier Transform Infrared Spectroscopy (FTIR) with 400-4000 cm-1, X-ray Diffractometry (XRD), Laser Particle Size Analyzing (LPSA), Si29 NMR analysis, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). FTIR and Si29 NMR results of the gel powder indicated that Si-O-C bonds were formed due to hydrolysis and condensation reactions . FTIR results showed a very strong peak for heat treated powder at 1500°C after carbon removal which is corresponded to Si-C bond. Obtained pattern from X-ray diffractometry showed that the final products contain -SiC phase with poly crystalline planes and little amounts of residual carbon. PSA results showed that the average particles size were 50.6 nm with monosized distribution. Also microstructural studies showed that the SiC nano powders have semi spherical morphology with mean particles size of 30-50 nm and also there are some agglomerates with irregular shape.
Y. Safaei-Naeini, F. Golestani-Fard, F. Khorasanizadeh, M. Aminzare, S. Zhang,
Volume 8, Issue 3 (9-2011)
Abstract
Abstract:
composition of MgO and nano boehmite. The reactant and potassium chloride, as the reaction media, were fired at
800-1000 °C at different dwell times (0.5-5 h) in the ambient atmosphere. After washing and filtration, the spinel nano
powder was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Brunauer-Emmett-
Teller (BET) techniques. It was demonstrated that the formation temperature decreased to 850
particles revealed an average size of 30 nm with a narrow size distribution. The mechanism of MgAl
was found to be a template type where the morphology and size of product were similar to those of alumina formed
from boehmite decomposition. Prolonging the reaction time from 0.5 to 3 h, the reaction was further completed and
crystallinity was improved. However, the increase of temperature was more effective in this regard.
MgAl2O4 (MA) nano powder was synthesized via molten salt technique, by heating stochiometric°C. The nano spinel2O4 formation
N Parvin, R Derakhshandeh Haghighi, M Naeimi, R Parastar Namin, M. M. Hadavi,
Volume 11, Issue 4 (12-2014)
Abstract
In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was carried out at 1100 ̊C under a reducing atmosphere for 1h. The effect of additives on infiltration of Ag and density were evaluated by SEM and Archimedes methods. Properties of the specimens were compared following two distinct processes namely: I) sintering simultaneously with infiltration process and II) sintering prior to infiltration (pre-sintering process). It was found that specimens which were pre-sintered and then infiltrated with molten silver represent higher hardness and finer microstructure than the specimens infiltrated simultaneously with sintering.
M. Khaleghian, M. Kalantar, S. S. Ghasemi,
Volume 12, Issue 2 (6-2015)
Abstract
Lead zirconate titanate (PZT) as a piezoelectric ceramic has been used widely in the fields of electronics,
biomedical engineering, mechatronics and thermoelectric. Although, the electrical properties of PZT ceramics is a
major considerable, but the mechanical properties such as fracture strength and toughness should be improved for
many applications. In this study, lead monoxide, zirconium dioxide and titanium dioxide were used to synthesize PZT
compound with chemical formula Pb(Zr
0.52
,Ti
0.48
)O
3
by calcination heat treatment. Planetary mill with zirconia balls
were used for homogenization of materials. Two-stage calcination was performed at temperatures of 600˚C and 850˚C
for holding time of 2h. In order to improve the mechanical properties of PZT, various amount of ZnO and/or Al
2
O
3
particles were added to calcined materials and so PZT/ZnO, PZT/Al
2
O
3
and PZT/ZnO+Al
2
O
3
composites were
fabricated. Composites samples were sintered at 1100˚C for 2 h in the normal atmosphere. Microstructural component
and phase composition were analyzed by XRD and SEM. The density, fracture strength, toughness and hardness were
measured by Archimedes method, three-point bending, direct measurement length crack and Vickers method,
respectively. Dielectric and piezoelectric properties of the samples were also measured by LCR meter and d33metet
tester, respectively. The results showed that by addition of ZnO and Al
2
O
3
to composite materials, the relative density
of PZT based composites was increased in conjunction with a signification improvement of mechanical properties such
as flexural strength, toughness and hardness. Moreover, the dielectric and piezoelectric properties of PZT such as
dielectric constant, piezoelectric coefficient and coupling factor were decreased while the loss tangent was also
increased.
N. Aboudzadeh, Ch. Dehghanian, M.a. Shokrgozar,
Volume 14, Issue 4 (12-2017)
Abstract
Recently, magnesium and its alloys have attracted great attention for use as biomaterial due to their good mechanical properties and biodegradability in the bio environment. In the present work, nanocomposites of Mg - 5Zn - 0.3Ca/ nHA were prepared using a powder metallurgy method. The powder of Mg, Zn and Ca were firstly blended, then four different mixtures of powders were prepared by adding nHA in different percentages of 0, 1, 2.5 and 5 %wt. Each mixture of powder separately was fast milled, pressed, and sintered. Then, the microstructure and mechanical properties of the fabricated nanocomposites were investigated. The XRD profile for nanocomposites showed that the intermetallic phases of MgZn2, MgZn5.31 and Mg2Ca were created after sintering and the SEM micrographs showed that the grain size of nanocomposite reduced by adding the nHA. The nano composite with 1wt. % nHA increased the density of Mg alloy from 1.73 g/cm3 to 1. 75 g/cm3 by filling the pores at the grain boundaries. The compressive strength of Mg alloy increased from 295MPa to 322, 329 and 318MPa by addition of 1, 2.5 and 5wt. % nHA, respectively.
H. Momeni, S. Shabestari, S.h. Razavi,
Volume 17, Issue 4 (12-2020)
Abstract
In this research, densification and shape distortion of the Al-Cu-Mg (Al2024) pre-alloyed powder compact in the supersolidus liquid phase sintering process (SLPS) were investigated. The effect of Sn on the sintering process was also studied. The powders were compacted at pressures ranging from 100 to 500 MPa in a cylindrical die. The sintering process was performed in a dry N2 atmosphere at various temperatures (580-620 ºC) for 30 min at a heating rate of 10 ºCmin-1. Results showed that the onset of densification process was observed at 600ºC and onset of distortion was occurred at 610ºC. Addition of 0.1 wt. %Sn to the alloy has increased the distortion of the samples produced from Al-Cu-Mg pre-alloyed powder, but their densification has been improved. The compact pressure of 200MPa caused the complete densification at the optimum sintering temperature and at the compact pressures greater than 200MPa; the sintered density was independent of green density.
S. M. Alduwaib, Muhannad M. Abd, Israa Mudher Hassan,
Volume 19, Issue 3 (9-2022)
Abstract
Background: Superhydrophobic materials which have contact angle higher than 150°, considering their widespread applications, are very important for researchers.
Method: In this research, silica nanopowder was synthesized successfully using inexpensive sodium silicate source and very simple and facile method. Synthesis of hydrophobic solution was carried out by sol-gel method. The surface modification of silica nanopowder was performed using different silane/siloxane polymers and was deposited on glass slides. For characterization of the samples XRD, FESEM, EDX, TEM, FTIR, and Raman analysis were used.
Results: The XRD result shows a very wide peak at 2q = 24.7° which indicates the amorphous nature of the silica particles. The results of the performed characteristics confirm the synthesis of silica nanopowder with the size of less than 25 nm. The EDX spectrum shows that only Si and O elements are present in the structure and no impurities are visible. The contact angle between water droplet and thin films was measured and the effect of different synthesis parameters on the contact angle was studied. Among the studied polymers and solvents, the most hydrophobicity was obtained using TMCS polymer and xylene solvent. The optimized sample has a maximum contact angle of 150.8°.
Conclusion: The synthesized thin films have superhydrophobic properties and the method used in this research can be developed for use in industrial applications.
Razieh Khoshhal, Seyed Vahid Alavi Nezhad Khalil Abad,
Volume 20, Issue 1 (3-2023)
Abstract
- In this article, the effect of graphite on iron-silicon interactions was investigated. It was found that, as graphite enters the iron structure, it permits further development of iron-silicon reactions. It was found that in the stoichiometric ratio of 1:0.5 of iron and silicon, when graphite is added to the system, simultaneously with the reaction of iron and silicon to form Fe3Si5, some amount of carbon can be dissolved in the iron and lead to more diffusion in iron and more iron silicide production. Silicon also reacts with carbon and produces SiC. The more amount of carbon entered into the system, the more growth of SiC occurs, while the production of other iron silicide phases, namely FeSi and Fe3Si preceded. Finally diffused carbon into the iron reaches a definite amount that can form Fe3C. In the stoichiometric ratio of 1:1 of iron and silicon, the formation of FeSi and SiC phases is observable. At the same time, the diffusion of carbon occurs in the same as the previous stoichiometric ratio. In the stoichiometric ratio of 1:2 of iron and silicon, compared with the stoichiometric ratio of 1:1, a larger amount of silicon is available and, the FeSi2 phase can form in addition to FeSi
Sara Ahmadi, Reza Momeni,
Volume 20, Issue 4 (12-2023)
Abstract
The polymer modified cementitious tile adhesives are very significant in construction sector. In order to considerably improve the bond qualities of the tile adhesive in polymer modified mortars, the proportions of constituent ingredients should be carefully selected. Consequently, to design high performance tile adhesives, interactions between all the components, such as the adhesion mechanisms between the polymers film and the substrate and the effect of various additives should be recognized. The effect of vinyl acetate ethylene (EVA), high alumina cement (HAC), and additives such as calcium formate and polycarboxylate on the adhesion qualities of ceramic tile adhesive was explored in this study. The findings indicated that these ingredients had an impact on the mortars' adhesive properties, and it is necessary to find their optimal amounts in order to achieve the maximum adherence. The results showed that the tensile strength of mortar was increased with increasing the polymer amounts. A microstructural analysis revealed that the polymer was distributed homogenously throughout the mortar. The optimum amount of the used high alumina cement was determined 3 wt.%. Additionally, increasing the amount of accelerator and super plasticizer increased the tensile strength of ceramic tile adhesive by approximately 20-30%.