Search published articles


Showing 2 results for Titanium Oxide

Barzegar Alamdarit B., Ashrafi Zadeh S.n., Ashrafi Zadeh F.,
Volume 1, Issue 2 (6-2004)
Abstract

In the current research, the optimum conditions for the electrolytic deposition of TiO2 coatings on titanium pieces were experimentally investigated. Flat pieces of commercially available titanium with dimensions of 50 x20 x3 mm were used as the anode and cathode electrodes. The coatings were applied on the cathode in an electrolyte solution essentially from water and methanol, containing different amounts of TiCI4, and H202. Coatings of sufficient thickness and adequate adhesion to the substrate were obtained at the optimum conditions of theELD process. The latter conditions were electrode gap distance of 3 cm, TiCl4 concentration of 0.005M, H202 concentration of 0.1 M, current density of 35 mA/cm2, methanol/water volume ratio of 9, and pH of the electrolyte in the vicinity of 1.40. Results of XRD analysis revealed the presence of anatase crystals of titanium oxide in the coated layers, where the deposited coating was treated at some temperatures in the range of 400 to 600°C for a period of at least 2 hours. Scanning electron microscopy (SEM) pictures also confirmed the formation of a uniform coating layer with cracked suiface area. At the optimum conditions of the process coatings with thicknesses of up to 10 flm were easily obtained through the application of one to three deposited layers.
Milad Hooshyar, Maryam Torshabi, Maryam Kazemi,
Volume 20, Issue 2 (6-2023)
Abstract

Titanium implants are one of the most durable and conventional orthopedic and dental implants. The goal of this research is to improve the bio-compatibility of these implants by implementing nano coating of titanium oxide nanotubes (TNT) to enhance bone graft on the implant surface, and reduction of wound healing duration and risk of implant surgery at the same time. For this purpose, the effects of dimension and atomic structure of titanium oxide nanotubes are examined on the surface properties and biological performance and tried to introduce an optimum status of this nano-tubular structure. TNTs were synthesized by anodizing method on the surface of titanium sheets. Dimensions of TNT can be controlled by anodizing process parameters. Heat treatment affects the atomic structure of TNTs. Contact angle measurement as one of the important surface properties was investigated on different dimensions and structures of TNTs, to study human blood's physical interaction with the implant surface. In addition, the quality and quantity of bone material sediment on the surface were examined by SBF test and SEM analysis. Finally, cell culture provided informative data on bone cells' response to these nanotubular coatings by analyzing MTT results and SEM photography of cells. As a result, the optimum dimension and atomic structure of TNTs were defined and the required process parameters were introduced to obtain this state. This setup can be used as an optimum state of TNT as a nano coating on titanium implant with orthopedic functions to enhance the cell adhesion and acquire the highest proliferation rate which means faster bone graft and shorter convalescence.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb