Volume 6, Issue 2 (6-2016)                   IJOCE 2016, 6(2): 159-171 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fattahi H. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE. IJOCE 2016; 6 (2) :159-171
URL: http://ijoce.iust.ac.ir/article-1-243-en.html
Abstract:   (18960 Views)

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM penetration  rate  can  be  very  helpful  in  estimation  of  this  vital  parameter.  However, establishing relationship between rock properties and TBM penetration rate is not a simple task and cannot be done using a simple linear or nonlinear method. Adaptive neuro fuzzy inference system based on fuzzy c–means clustering algorithm (ANFIS–FCM) is one of the 
robust  artificial  intelligence  algorithms  proved  to  be  very  successful  in  recognition  of relationships  between  input  and  output  parameters.  The  aim  of  this  paper  is  to  show  the application of ANFIS–FCM in estimation of TBM performance. The model was applied to available data given in open source literatures. The results obtained show that the ANFIS–FCM model can be used successfully for estimation of the TBM performance.

Full-Text [PDF 388 kb]   (7373 Downloads)    
Type of Study: Research | Subject: Optimal design
Received: 2015/12/18 | Accepted: 2015/12/18 | Published: 2015/12/18

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb