This paper presents an efficient optimization procedure to find the optimal shapes of double curvature arch dams considering fluid–structure interaction subject to earthquake loading. The optimization is carried out using a combination of the magnetic charged system search, big bang-big crunch algorithm and artificial neural network methods. Performing the finite element analysis during the optimization process is time consuming. Back propagation neural network is utilized to reduce the computational burden. A real-world arch dam is considered as a numerical example to demonstrate the efficiency of the proposed method. The numerical results reveal the computational advantages of the new method for optimal
design of arch dams.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |