Volume 7, Issue 2 (3-2017)                   IJOCE 2017, 7(2): 291-318 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaiee-Pajand M, Naserian R. NONLINEAR FRAME ANALYSIS BY MINIMIZATION TECHNIQUE. IJOCE 2017; 7 (2) :291-318
URL: http://ijoce.iust.ac.ir/article-1-299-en.html
Abstract:   (20822 Views)

By minimizing the total potential energy function and deploying the virtual work principle, a higher-order stiffness matrix is achieved. This new tangent stiffness matrix is used to solve the frame with geometric nonlinear behavior. Since authors’ formulation takes into account the higher-order terms of the strain vector, the convergence speed of the solution process will increase. In fact, both linear and nonlinear parts of the frame axial strains are included in the presented formulation. These higher-order terms affect the resulting unbalanced force and also frame tangent stiffness. Moreover, the finite element method, updated Lagrangian description, and arc length scheme are employed in this study. To check the efficiency of the proposed strategy, several numerical examples are solved. The findings indicate that the authors’ technique can accurately trace the structural equilibrium paths having the limit points.

Full-Text [PDF 1021 kb]   (6396 Downloads)    
Type of Study: Research | Subject: Optimal design
Received: 2016/11/27 | Accepted: 2016/11/27 | Published: 2016/11/27

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb