

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING
Int. J. Optim. Civil Eng., 2020; 10(1):35-51

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE
NUMBER OF CROSSING OF COMPLETE GRAPHS AND

COMPLETE BIPARTITE GRAPHS

A. Kaveh*, † and K. Biabani Hamedani

School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

ABSTRACT

The minimum crossing number problem is among the oldest and most fundamental
problems arising in the area of automatic graph drawing. In this paper, eight population-
based meta-heuristic algorithms are utilized to tackle the minimum crossing number
problem for two special types of graphs, namely complete graphs and complete bipartite
graphs. A 2-page book drawing representation is employed for embedding graphs in the
plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch
algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm,
Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation
Optimization algorithm, and Vibrating Particles System algorithm. The performance of the
utilized algorithms is investigated through various examples including six complete graphs
and eight complete bipartite graphs. Convergence histories of the algorithms are provided to
better understanding of their performance. In addition, optimum results at different stages of
the optimization process are extracted to enable to compare the meta-heuristics algorithms.

Keywords: crossing number; meta-heuristic algorithms; optimization; 2-page
book drawing; complete graph; complete bipartite graph.

Received: 10 September 2019; Accepted: 25 November 2019

1. INTRODUCTION

Given a drawing ܵ of graph ܵ, the intersections which occur in the interiors of members are
the crossings. The crossing number of a graph is the minimum number of crossings over all
possible drawings of ܵ. Minimum crossing number problem is a classic and very important
problem in graph drawing. This problem has important applications such as determining the

* Corresponding author: School of Civil Engineering, Iran University of Science and Technology,
Narmak, Tehran, P.O. Box 16846-13114, Iran
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh and K. Biabani Hamedani

36

statical indeterminacy of skeletal structures, design of printed circuit board layout, VLSI
circuit routing, automated graph drawing. The objective of the minimum crossing number
problem is to embed the members of a graph so that the total number of crossings is
minimized. For a general graph, there is no known formula by which the crossing number
can be calculated. There is also no algorithm by means of which an optimal drawing can be
obtained. In fact it is proven that the minimum crossing number problem is NP-complete [1].
Therefore, an approach for estimating crossing numbers, and the exact value of crossing
number should be restricted to special graphs like complete graphs, bipartite graphs and
cubic graphs. For these graphs only upper and lower bounds for crossing numbers are
usually conjectured, but not proved to be exact. Graph theoretical studies for number of
crossing have been performed by Kaveh [2-4], and Kaveh and Rahami [5].

Meta-heuristic algorithm can be applied to the minimum crossing number problem.
Meta-heuristics try to combine randomization and rule-based theories which are almost
always taken from natural phenomena such as evolution, characteristics of biological
systems, social systems, swarm intelligence, and governing laws in different phenomena like
basic physical laws [6]. Meta-heuristic algorithms are easy to implement and have found
many applications in different areas of applied mathematics, engineering, medicine,
economics and other sciences [7,8]. Many researchers have applied meta-heuristic
algorithms for the minimum crossing number problem. Makinen and Sieranta [9] utilized
genetic algorithms for drawing bipartite graphs. Valls et al. [10] applied a tabu thresholding
algorithm to arc crossing minimization in bipartite graphs. Shahrokhi et al. [11] proposed
two polynomial time algorithms to generate near optimal drawing of a graph on book.
Cimikowski and Shope [12] employed a neural network algorithm for a graph layout
problem. Laguna et al. [13] performed arc crossing minimization in hierarchical design with
tabu search. Utech et al. [14] and Tettamanzi [15] utilized evolutionary algorithms for
drawing graphs. Marti [16] employed a greedy randomized adaptive search procedure
(GRASP) for minimum crossing number in graphs. Wang and Okazaki [17] proposed an
improved Hopfield neural network for solving the minimum crossing number problem.
Kaveh and Ilchi Ghazaan [18] applied particle swarm optimization, improved ray
optimization, colliding bodies optimization, and enhanced colliding bodies optimization to
the minimum crossing number problem.

In this research, we try to solve the minimum crossing number problem for complete and
complete bipartite graphs utilizing eight meta-heuristic algorithms. In other words, the aim
of optimization is to find drawings with the least possible crossings. A 2-page book drawing
is used for drawing the graphs. The algorithms consist of Artificial Bee Colony, Big Bang-
Big Crunch, Teaching-Learning-Based Optimization, Cuckoo Search, Charged System
Search, Tug of War Optimization, Water Evaporation Optimization, and Vibrating Particles
System. The codes for these algorithms are those of Kaveh and Bakhshpoori [8]. The
objective of optimization is to minimize the number of crossing members. Various examples
are provided to demonstrate the effectiveness of the meta-heuristic algorithms and to
compare their performance.

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 37

2. MATERIALS AND METHODS

2.1 Meta-heuristic algorithms

Eight meta-heuristic algorithms are utilized to minimize crossing number of graphs. These
algorithms are as follows: 1) Artificial Bee Colony (ABC) algorithm, 2) Big Bang-Big
Crunch (BB-BC) algorithm, 3) Teaching-Learning-Based Optimization (TLBO) algorithm,
4) Cuckoo Search (CS) algorithm, 5) Charged System Search (CSS) algorithm, 6) Tug of
War Optimization (TWO) algorithm, 7) Water Evaporation Optimization (WEO) algorithm,
and 8) Vibrating Particles System (VPS) algorithm. Kaveh and Bakhshpoori [8] coded these
algorithms and performed some experimental evaluations to assess the performance of the
algorithms in both aspects of convergence rate and accuracy. The maximum number of
objective function evaluations is defined as the stopping criteria of the algorithms. The
algorithms are introduced briefly in the following sections.

2.1.1 Artificial bee colony algorithm (ABC)

Swarm intelligence and group behavior of honey bees is the basic inspiration of some meta-
heuristics. The first one is the Artificial Bee Colony (ABC) algorithm which was introduced
by Karaboga [19] based on the foraging behavior of honey bees. In ABC algorithm each
candidate solution is represented by a food source, and its nectar quality represents the
objective function of that solution. These food sources are modified by honey bees in a
repetitive process manner with the aim of reaching food sources with better nectar. In ABC
honey bees are categorized into three types: employed or recruited, onlooker, and scout bees
with different tasks in the colony. Bees perform modification with different strategies
according to their task. Employed bees try to modify the food sources and share their
information with onlooker bees. Onlooker bees select a food source based on the
information from employed bees and attempt to modify it. Scout bees perform merely
random search in the vicinity of the hive. Hence ABC algorithm searches in three different
sequential phases in each iteration.

2.1.2 Big bang-big crunch algorithm (BB-BC)

The Big Bang-Big Crunch (BB-BC) algorithm was developed by Erol and Eksin [20]. BB-
BC is taken from the prevailing evolutionary theory for the origin of universe: the Big Bang
Theory. According to this theory, in the Big Bang phase, particles are drawn toward
irregularity by losing energy, while in the Big Crunch phase, they converged toward a
specific direction. Like other population-based meta-heuristics, BB-BC starts with a set of
random initial candidate solutions, as the initial Big Bang. After each Big Bang phase, a Big
Crunch phase should take place to determine a convergence operator by which particles will
be drawn into an orderly fashion in the subsequent Big Bang phase. The convergence
operator can be the weighted average of the positions of the candidate solutions or the
position of the best candidate solution. These two contraction (Big Crunch) and dispersing
(Big Bang) phases are repeated in the cyclic body of the algorithm in succession to satisfy a
stopping criteria with the aim of steering the particles toward the global optimum.

A. Kaveh and K. Biabani Hamedani

38

2.1.3 Teaching-learning-based optimization algorithm (TLBO)

Teaching-learning-based optimization (TLBO) algorithm was developed by Rao et al. [21]
based on the classical school learning process. TLBO consists of two stages: effect of a
teacher on learners and the influence of learners on each other. TLBO is initialized with a
population of random solutions, named students or learners. The smartest student with the
best objective function is assigned as the teacher in each iteration. Students are updated
iteratively to search the optimum within two phases: based on the knowledge transfer from
the teacher (teacher phase) and from interaction with other students (learner phase). In
TLBO the performance of the class in learning or the performance of teacher in teaching is
considered as a normal distribution of marks obtained by the students. TLBO improves other
students in the teacher phase by using the difference between the teacher’s knowledge and
the average knowledge of all the students. The knowledge of each student is obtained based
on the position taken place by that student in the search space. In a class, students also
improve themselves via interacting with each other after the teaching is completed by the
teacher. In the learner phase, TLBO improves each student by the knowledge interaction
between that student and another randomly selected one.

2.1.4 Cuckoo search algorithm (CS)

Cuckoo Search (CS) algorithm was developed by Yang and Deb [22] as an efficient
population-based meta-heuristic inspired by the behavior of some cuckoo species. Cuckoos
are fascinating birds because of their aggressive reproduction strategy. These species lay
their eggs in the nests of other host birds. The host takes care of the eggs presuming that the
eggs are its own. However, some of host birds are able to combat with this parasites
behavior of cuckoos and throw out the discovered alien eggs or build their new nests in new
locations. All the nests or eggs whether they belong to the cuckoos or host birds represent
the candidate solutions in the search space. Cuckoos and host birds try to breed their own
generation. In the cyclic body of the algorithm, two sequential search phases are performed
by cuckoos and host birds. Firstly, cuckoos produce the eggs. In this phase eggs are
produced by guiding the current solutions toward the best known solution. Then these new
eggs are intruded to the nests of host birds based on the replacement strategy. After cuckoo
breeding, it turns to the host birds. If a cuckoo’s egg is very similar to a host’s egg, then this
cuckoo’s egg is less likely to be discovered. In this phase host birds discover a fraction of
alien eggs and update them by adding them a random permutation-based step size. Based on
the replacement strategy, host bird replaces the produced egg with the current one. These
two search phases are repeated in the cyclic body of the algorithm until reaching to a
stopping criteria.

2.1.5 Charged system search algorithm (CSS)

Charged System Search (CSS) algorithm was developed by Kaveh and Talatahari [23] as an
efficient population-based meta-heuristic using some principles from physics and
mechanics. CSS utilizes the governing Coulomb laws from electrostatics and the Newtonian
laws of mechanics. In this algorithm each agent is a charged particle with a predetermined
radius. The charge of magnitude of particles is considered based on their quality. Each
particle creates an electric field, which exerts a force on other electrically charged objects.

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 39

Therefore, charged particles can affect each other based on their fitness values and their
separation distance. The quantity of the resultant force is determined by using the
electrostatics laws, and the quality of the movement is determined using Newtonian
mechanics laws. In each iteration, transitions of particles can be induced by electric fields
leading to particle-particle electrostatic interactions with the aim of attracting or repelling
the particles toward the optimum position.

2.1.6 Tug of war optimization algorithm (TWO)

Inspired by the game tug of war, Kaveh and Zolghadr [24] developed a novel population-
based meta-heuristic algorithm denoted as Tug of War Optimization (TWO) algorithm.
TWO considers each candidate solution as a team participating in a series of rope pulling
competitions. The teams exert pulling forces on each other based on the quality of the
solutions they represent. The competing teams move to their new positions according to
Newtonian laws of mechanics. TWO starts from a set of randomly generated initial
candidate solutions. Each candidate solution is considered as a team, and all population form
a league. The weight of teams is determined based on the quality of the corresponding
solutions, and the amount of pulling force that a team can exert on the rope is assumed to be
proportional to its weight. Naturally, the opposing team will have to maintain at least the
same amount of force in order to sustain its grip on the rope. The lighter team accelerates
toward the heavier team, and this forms the convergence operator of TWO. In each iteration
of the algorithm, the league is updated by a series of team-team rope pulling competitions
with the aim of attracting teams toward the optimum position.

2.1.7 Water evaporation optimization algorithm (WEO)

Inspired by evaporation of a tiny amount of water molecules on the solid surface with
different wettability, Kaveh and Bakhshpoori [25] developed a novel meta-heuristic called
Water Evaporation Optimization (WEO). This algorithm considers water molecules as
algorithm individuals. Solid surface or substrate with variable wettability is reflected as the
search space. Decreasing the surface wettability (substrate changed from hydrophilicity to
hydrophobicity) reforms the water aggregation from a monolayer to a sessile droplet. Such a
behavior is consistent with how the layout of individuals changes to each other as the
algorithm progresses. Decreasing wettability of the surface can represent the decrease of
objective function for a minimizing optimization problem. Evaporation flux rate of the water
molecules is considered as the most appropriate measure for updating the individuals which
its pattern of change is in good agreement with the local and global search ability of the
algorithm and can help WEO to have significantly well-converged behavior and simple
algorithmic structure.

2.1.8 Vibrating particles system algorithm (VPS)

Vibrating Particles System (VPS) algorithm is a new meta-heuristic search algorithm
developed by Kaveh and Ilchi Ghazaan [26]. VPS is motivated based on the free vibration of
single degree of freedom systems with viscous damping. Like other population-based meta-
heuristics, VPS starts from a random set of initial solutions and considers them as the free
vibrated single degree of freedom systems with viscous damping. Considering under-

A. Kaveh and K. Biabani Hamedani

40

damped conditions, each free vibrated system or vibrating particle will oscillate and return to
its equilibrium position. By utilizing a combination of randomness and exploitation of the
obtained results, VPS improves the quality of the particles iteratively by oscillating them
toward the equilibrium position, as the optimization process proceeds. Consider the
equilibrium position of each particle, consisting of three parts, the best position achieved so
far across the entire population (HP), a good particle (GP), and a bad particle (BP). In this
way the essence of VPS stands on three essential concepts, self-adaptation (particle moves
toward HB), cooperation (the GP and BP, which are selected from particles themselves, can
influence the new position of particles), and competition (the influence of GP will be more
than that of BP).

2.2 Definition of the optimization problem

A graph ܵ consists of a set of elements called nodes and a set of elements called members
together with a relation of incidence which associates each member with a pair of nodes,
called its ends. Two nodes of a graph are called adjacent if these nodes are the end nodes of
a member. A member is called incident with a node if it is an end node of that member. Two
members are called incident if they have a common end node. A complete graph is a graph
in which every two distinct nodes are connected by exactly one member, Fig. 1. A complete
graph with ܰ nodes is denoted by ܭே.

Figure 1. Some complete graphs

A graph is called bipartite, if the corresponding node set can be split into two sets ଵܰ and

ଶܰ in such a way that each member of ܵ joins a node of ଵܰ to a node of ଶܰ. A complete
bipartite graph is a bipartite graph in which each node ଵܰ is joined to each node of ଶܰ by
exactly one member. If the number of nodes in ଵܰ and ଶܰ are denoted by ݎ and ݏ ,
respectively, then a complete bipartite graph is denoted by ܭ,௦. Examples of bipartite and
complete bipartite graphs are shown in Fig. 2.

 (a) A bipartite graph (b) A complete bipartite graph (ܭଷ,ସ)

Figure 2. Two bipartite graphs

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 41

A drawing ܵ of a graph ܵ in the plane is a mapping of the nodes of ܵ to distinct points of
ܵ, and the members of ܵ to open arcs of ܵ such that [3]:
(i) the image of no member contains that of any node;
(ii) the image of a member (݊, ݊) joins the points corresponding to ݊ and ݊.

A drawing is called admissible if the members are such that:
(i) no two arcs with a common end point meet;
(ii) no two arcs meet in more than one point;
(iii) no three arcs meet in a common point.

A point of intersection of two members in a drawing is called a crossing, and the crossing
number ܿሺܵሻ of a graph ܵ is the number of crossings in any admissible drawing of ܵ in the
plane. An optimal drawing in a given surface is one which exhibits the least possible
crossings. It is proven that for given graph ܵ and an integer ݇, the question ܿሺܵሻ ݇ is NP-
complete [1]. There are conjectures for the crossing number of both the complete and
complete bipartite graphs [27]:

ܿሺܭேሻ ൌ
1
4

ܰ
2
൨
ܰ െ 1
2

൨
ܰ െ 2
2

൨
ܰ െ 3
2

൨ (1)

ܿ൫ܭ,௦൯ ൌ
1
4
ቂ
ݎ
2
ቃ
ݎ െ 1
2

൨ ቂ
ݏ
2
ቃ
ݏ െ 1
2

൨ (2)

where ܿሺܭேሻ is the crossing number of the complete graph ܭே. It should be noted that the
equation (1) has been confirmed only for ܰ 12. The smallest unsolved case is ܭଵଷ with
conjectured crossing number 225. Furthermore, ܿ൫ܭ,௦൯ is the crossing number of the
complete bipartite graph ܭ,௦. The equation (2) is known to be true for ݎ 6 and all ݏ, and
also for ݎ ൌ 7 when ݏ 10 [18].

Towards the end of the century, substantially different drawings of ܭே were found, such
as cylindrical drawing, 2-page book drawing, monotone drawing, shellable drawing, etc. To
this date, no drawing of ܭே with fewer than ܿሺܭேሻ crossings is known [28]. In the 2-page
book drawing representation which is used here, all the nodes of the graph are on a line and
each member is embedded in either the upper page or the lower page defined by the line
[28]. A 2-page book drawing of ଼ܭ is shown in Fig. 3.

Figure 3. A 2-page book drawing of ଼ܭ

A. Kaveh and K. Biabani Hamedani

42

Any pair of members ݆݅ and ݈݇ cross in a drawing if ݅ ൏ ݇ ൏ ݆ ൏ ݈ and both lie in the
same page. The state ݕ ൌ 1 indicates that the member between nodes ݅ and ݆ (the member
݆݅) is embedded in the upper page, and the state ݕ ൌ 0 indicates that the the member ݆݅ is
embedded in the lower page. The number of members in a given graph determines the
number of design variables of the optimization problem. The linear crossing number
problem can be mathematically stated as finding the minimum of the following objective
function [17]:

ݎܾ݁݉ݑ݊	݃݊݅ݏݏݎܿ ൌ
1
2
൫ ݃. ݃. ݀. .ݕ ൯ݕ

1
2
ቀ ݃. ݃. ݀. ሺ1 െ .ሻݕ ሺ1 െ ሻቁݕ

 (3)

where ݀ is crossing condition and can be stated as follows:

݀ ൌ ൜
1, ݂݅ ݅ ൏ ݆ ൏ ݇ ൏ ݈ ݎ ݇ ൏ ݅ ൏ ݈ ൏ ݆
0, ݁ݏ݅ݓݎ݄݁ݐ

 (4)

݃ indicates whether the member ݆݅ exist.

݃ ൌ ൜
1, ݂݅ ݎܾ݁݉݁݉ ݆݅ ݐݏ݅ݔ݁
0, ݁ݏ݅ݓݎ݄݁ݐ

 (5)

3. RESULTS AND DISCUSSION

Six complete graphs (,଼ܭ ,ଽܭ ,ଵܭ ,ଵଵܭ ,ଵଶܭ ଵଷܭ) and eight complete bipartite graphs
,ଷ,ଵܭ) ,ଷ,ଵହܭ ,ସ,ହܭ ,ସ,ଵܭ ,ସ,ଵହܭ ,ହ,ହܭ ,ହ,ଵܭ ହ,ଵହ) are studied to illustrate the efficiency of theܭ
algorithms. Optimization results of all algorithms are presented in Tables 1 to 6. Tables 1 to
3 shows the optimum results for complete graphs, and the results in Tables 4 to 6 are those
of the complete bipartite graphs. Optimum solutions at four different stages of the
optimization process are provided in Tables 3 and 6 for complete and complete bipartite
graphs, respectively. These two tables enable us to compare the performance of meta-
heuristics algorithms. The average and standard deviation of results are shown in the Tables
2 and 5 for complete and complete bipartite graphs, respectively. Convergence histories of
all graphs are depicted in Figs. 7 to 20. The maximum number of objective function
evaluations is different for each graph. For instance, this parameter is set to 500 for ଼ܭ and
 obtained ଼ܭ ଵଷ. Embeding of the complete graphܭ ଵଶ andܭ ଽ, while this is set to 2000 forܭ
by TLBO is shown in Fig. 4. Fig. 5 shows the embeding of the complete bipartite graph
 ସ,ଵ obtained by WEOܭ ଷ,ଵ obtained by CSS. In addition, embeding of the complete graphܭ
is shown in Fig. 6. The optimization results show that the algorithms have relatively close
performances for small complete and complete bipartite graphs which demonstrates the high
performance of the algorithms. A careful examination of Figs. 11, 12, 17, and 20 reveals that
TWO, CS, CSS, and WEO have better performance for larger complete and complete
bipartite graphs (ܭଵଶ, ܭଵଷ, ܭସ,ଵହ, ܭହ,ଵହ) in both aspects of convergence rate and accuracy
compared to other used algorithms. These algorithms also have better results in terms of the

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 43

average and standard deviation of results. As it can be seen from Tables 1, TWO, CS, CSS,
and WEO converge to the global optimum (optimal drawing) for all complete graphs. On the
contrary, an examination of Table 4 reveals that for some of the complete bipartite graphs
(e.g. ܭସ,ହ, ܭହ,ହ, ܭହ,ଵ), TWO, CS, CSS, and WEO converge to identical solutions close to the
optimal drawing, but not equal. The reason is that these drawings are the best possible ones
which can be found in a 2-page book drawing. In other words, by mean of the 2-page book
drawing, it is impossible to find an embedding with fewer crossings for the above mentioned
graphs.

Table 1: Optimal results obtained for the complete graphs

Graph Minimum ABC BB-BC TLBO CS CSS TWO WEO VPS
 18 18 18 18 18 18 18 18 18 ଼ܭ
 ଽ 36 36 36 36 36 36 36 36 36ܭ
 ଵ 60 60 60 60 60 60 60 60 60ܭ
 ଵଵ 100 100 100 100 100 100 100 100 100ܭ
 ଵଶ 150 150 150 153 150 150 150 150 155ܭ
 ଵଷ - 227 225 229 225 225 225 225 231ܭ

Table 2: Statistical results of the complete graphs

Graph ABC BB-BC TLBO CS CSS TWO WEO VPS

 ଼ܭ
Average 19.42 20.37 18.57 19.28 18.44 19.21 18.56 19.66
Std. dev. 2.20 2.22 1.17 1.21 1.22 0.88 0.81 1.87

No. of analyses 500 500 500 500 500 500 500 500

 ଽܭ
Average 37.24 37.4 37.04 37.2 37.24 36.48 37.44 37.81
Std. dev. 3.05 3.73 3.16 1.94 2.70 1.69 3.06 4.88

No. of analyses 500 500 500 500 500 500 500 500

 ଵܭ
Average 62.85 63.46 64.86 63.19 65.06 63.05 63.53 67.69
Std. dev. 5.53 6.79 7.76 5.28 6.90 5.27 6.88 6.96

No. of analyses 1000 1000 1000 1000 1000 1000 1000 1000

 ଵଵܭ
Average 102.44 104.81 103.14 103.18 107.40 104.47 102.92 107.51
Std. dev. 5.72 7.43 7.37 9.08 11.05 10.64 7.71 8.00

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500

 ଵଶܭ
Average 159.67 158.84 160.62 157.13 156.49 156.25 157.40 177.44
Std. dev. 12.61 15.94 15.71 16.03 15.01 16.73 16.66 16.11

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000

 ଵଷܭ
Average 237.92 236.33 251.43 236.18 234.25 230.45 234.66 248.34
Std. dev. 18.91 23.52 17.83 22.63 22.99 15.92 22.23 24.69

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000

A. Kaveh and K. Biabani Hamedani

44

Table 3: Optimum results at different stages of optimization (complete graphs)

Graph
No. of

analyses
ABC BB-BC TLBO CS CSS TWO WEO VPS

 ଼ܭ

125 19 19 18 20 18 20 19 21
250 19 18 18 19 18 20 18 19
375 18 18 18 18 18 18 18 18
500 18 18 18 18 18 18 18 18

 ଽܭ

125 36 36 36 40 38 36 38 36
250 36 36 36 36 36 36 36 36
375 36 36 36 36 36 36 36 36
500 36 36 36 36 36 36 36 36

 ଵܭ

250 63 63 63 63 64 63 66 68
500 61 61 62 61 62 61 60 67
750 60 60 61 60 61 60 60 63
1000 60 60 60 60 60 60 60 60

 ଵଵܭ

375 102 100 100 102 108 102 104 116
750 100 100 100 100 102 100 100 104
1125 100 100 100 100 102 100 100 102
1500 100 100 100 100 100 100 100 100

 ଵଶܭ

500 160 162 161 156 154 153 154 178
1000 157 150 153 153 150 150 150 176
1500 152 150 153 150 150 150 150 167
2000 150 150 153 150 150 150 150 155

 ଵଷܭ

500 233 231 259 233 233 225 231 249
1000 233 225 251 227 225 225 225 241
1500 227 225 235 225 225 225 225 231
2000 227 225 229 225 225 225 225 231

Table 4: Optimal results obtained for the complete bipartite graphs

Graph Minimum ABC BB-BC TLBO CS CSS TWO WEO VPS
 ଷ,ଵ 20 20 20 20 20 20 20 20 20ܭ
 ଷ,ଵହ 49 49 49 49 49 49 49 49 49ܭ
 ସ,ହ 8 10 10 10 10 10 10 10 10ܭ
 ସ,ଵ 40 54 54 54 54 54 54 54 54ܭ
 ସ,ଵହ 98 130 130 132 130 130 130 130 133ܭ
 ହ,ହ 16 20 20 20 20 20 20 20 20ܭ
 ହ,ଵ 80 100 100 100 100 100 100 100 100ܭ
 ହ,ଵହ 196 252 244 262 244 244 244 244 252ܭ

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 45

Table 5: Optimum results at different stages of optimization (complete bipartite graphs)

Graph
No. of

analyses
ABC BB-BC TLBO CS CSS TWO WEO VPS

 ଷ,ଵܭ

125 23 22 23 31 20 31 28 29
250 20 20 20 20 20 21 20 20
375 20 20 20 20 20 20 20 20
500 20 20 20 20 20 20 20 20

 ଷ,ଵହܭ

250 67 49 55 57 53 61 59 91
500 51 49 49 49 49 49 49 85
750 49 49 49 49 49 49 49 57
1000 49 49 49 49 49 49 49 49

 ସ,ହܭ

100 10 10 10 10 11 10 10 10
200 10 10 10 10 10 10 10 10
300 10 10 10 10 10 10 10 10
400 10 10 10 10 10 10 10 10

 ସ,ଵܭ

200 57 54 71 60 54 60 54 75
400 54 54 54 54 54 54 54 66
600 54 54 54 54 54 54 54 57
800 54 54 54 54 54 54 54 54

 ସ,ଵହܭ

375 165 140 176 156 132 130 130 185
750 148 130 156 133 130 130 130 174
1125 130 130 156 130 130 130 130 148
1500 130 130 132 130 130 130 130 133

 ହ,ହܭ

100 20 20 24 24 26 24 20 20
200 20 20 20 20 20 20 20 20
300 20 20 20 20 20 20 20 20
400 20 20 20 20 20 20 20 20

 ହ,ଵܭ

375 102 103 113 100 100 103 101 133
750 101 100 100 100 100 100 100 100
1125 100 100 100 100 100 100 100 100
1500 100 100 100 100 100 100 100 100

 ହ,ଵହܭ

500 336 262 370 348 252 262 270 384
1000 278 256 342 302 244 244 244 312
1500 262 244 294 256 244 244 244 280
2000 252 244 262 244 244 244 244 252

A. Kaveh and K. Biabani Hamedani

46

Table 6: Statistical results of the complete bipartite graphs

Graph ABC BB-BC TLBO CS CSS TWO WEO VPS

 ଷ,ଵܭ
Average 23.50 26.66 23.10 26.77 22.33 25.1 25.70 24.68
Std. dev. 8.54 8.92 6.44 12.59 5.87 8.49 10.10 6.69

No. of analyses 500 500 500 500 500 500 500 500

 ଷ,ଵହܭ
Average 59.70 55.85 60.18 58.82 55.00 61.74 58.30 81.95
Std. dev. 16.98 19.28 20.05 21.24 15.14 22.85 16.37 24.34

No. of analyses 1000 1000 1000 1000 1000 1000 1000 1000

 ସ,ହܭ
Average 10.65 11.58 11.22 11.53 10.40 10.67 11.32 10.64
Std. dev. 2.55 4.23 3.00 3.99 0.99 2.32 3.32 2.22

No. of analyses 400 400 400 400 400 400 400 400

 ସ,ଵܭ
Average 59.58 60.94 61.63 62.14 59.4 60.98 59.03 67.88
Std. dev. 14.51 15.27 11.51 17.22 13.32 16.85 14.51 15.36

No. of analyses 800 800 800 800 800 800 800 800

 ସ,ଵହܭ
Average 156.88 151.43 170.70 150.92 141.29 149.98 144.48 176.66
Std. dev. 36.62 38.16 35.54 34.99 30.60 41.77 35.05 40.72

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500

 ହ,ହܭ
Average 21.56 22.06 22.74 22.22 22.40 21.82 22.41 22.76
Std. dev. 5.26 5.26 4.84 4.51 3.48 3.53 5.45 7.01

No. of analyses 400 400 400 400 400 400 400 400

 ହ,ଵܭ
Average 108.17 109.58 110.83 106.71 109.09 108.32 109.62 114.52
Std. dev. 19.59 23.34 22.84 20.33 23.35 20.51 23.96 25.39

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500

 ହ,ଵହܭ
Average 302.24 269.13 340.48 310.51 274.27 269.93 270.15 333.34
Std. dev. 61.40 47.14 49.61 69.55 63.20 51.69 54.43 57.64

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000

Figure 4. Embeding of the complete graph ଼ܭ obtained by TLBO

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 47

Figure 5. Embeding of the complete

bipartite graph ܭଷ,ଵ obtained by CSS

Figure 6. Embeding of the complete

bipartite graph ܭସ,ଵ obtained by WEO

Figure 7. Convergence histories for ଼ܭ

Figure 8. Convergence histories for ܭଽ

Figure 9. Convergence histories for ܭଵ

Figure 10. Convergence histories for ܭଵଵ

A. Kaveh and K. Biabani Hamedani

48

Figure 11. Convergence histories for ܭଵଶ

Figure 12. Convergence histories for ܭଵଷ

Figure 13. Convergence histories for ܭଷ,ଵ

Figure 14. Convergence histories for ܭଷ,ଵହ

Figure 15. Convergence histories for ܭସ,ହ

Figure 16. Convergence histories for ܭସ,ଵ

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 49

Figure 17. Convergence histories for ܭସ,ଵହ

Figure 18. Convergence histories for ܭହ,ହ

Figure 19. Convergence histories for ܭହ,ଵ

Figure 20. Convergence histories for ܭହ,ଵହ

4. CONCLUSION

In this paper, eight population-based meta-heuristic algorithms are employed for the
minimum crossing number problem in complete graphs and complete bipartite graphs. The
algorithms consist of Artificial Bee Colony, Big Bang-Big Crunch, Teaching-Learning-
Based Optimization, Cuckoo Search, Charged System Search, Tug of War Optimization,
Water Evaporation Optimization, and Vibrating Particles System. A 2-page book drawing
representation is used for embedding the graphs. The objective of optimization is to
minimize the crossing number of complete and complete bipartite graphs. All the utilized
algorithms can find optimal or near optimal drawings rapidly and have an acceptable
performance for the minimum crossing number problem. The results indicate superiority of
the CS, CSS, TWO, and WEO algorithms in both aspects of convergence rate and accuracy
compared to other employed algorithms. The convergence histories of the mentioned
algorithms indicate that they have a close performance.

A. Kaveh and K. Biabani Hamedani

50

REFERENCES

1. Gary MR, Johnson DS. Crossing number is NP-complete, SIAM J Alg Disc Meth 1983;
4(3): 312-16.

2. Kaveh A. Space structures and crossing number of their graphs, Mech Struct Mach 1993;
21(2): 151-66.

3. Kaveh A. Structural Mechanics: Graph and Matrix Methods, Research Studies Press, 3rd
edition, Baldock, Hertfordshire, England, 2004.

4. Kaveh A. Crossing number, genus and thickness of a graph for the flexibility analysis of
structures, In Trends in Application of Mathematics to Mechanics, Edits: Schneider W,
Troger H, Ziegler F. Longman Scientific & Technical, New York, 1991, pp. 333-338.

5. Kaveh A, Rahami H. An efficient algorithm for embedding non-planar graphs in planes, J
Math Model Algor 2002; 1(4): 257-68.

6. Kaveh A. Advances in Metaheuristics Algorithms for Optimal Design of Structures,
Springer, 2nd edition, Cham, Switzerland, 2017.

7. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering,
Springer, 1st edition, Cham, Switzerland, 2017.

8. Kaveh A, Bakhshpoori T. Metaheuristics: Outlines, MATLAB Codes and Examples,
Springer, 1st edition, Cham, Switzerland, 2019.

9. Makinen E, Sieranta M. Genetic algorithms for drawing bipartite graphs, Int J Comput Math
1994; 53(3-4): 157-66.

10. Valls V, Marti R, Lino P. A tabu thresholding algorithm for arc crossing minimization in
bipartite graphs, Ann Oper Res 1996; 63(2): 233-51.

11. Shahrokhi F, Szekely LA, Sykoro O, Vrto I. The book crossing number of a graph, J Graph
Theory 1996; 21(4): 413-24.

12. Cimikowski R, Shope P. A neural network algorithm for a graph layout problem, IEEE T
Neural Networ 1996; 7(2): 341-5.

13. Laguna M, Marti R, Valls V. Arc crossing minimization in hierarchical design with tabu
search, Comput Oper Res 1997; 24(12): 1175-86.

14. Utech J, Branke J, Schmeck H, Eades P. An evolutionary algorithm for drawing directed
graphs, Proceedings of the International Conference on Imaging Science, Systems, and
Technology, Las Vegas, Nevada, USA, 1998, pp. 154-60.

15. Tettamanzi AGB. Drawing graphs with evolutionary algorithms, Proceedings of 1998
Conference on Adaptive Computing in Design and Manufacture, Plymouth, England, 1998,
pp. 325-37.

16. Marti R. Arc crossing minimization in graphs with GRASP, IIE Trans 2001; 33(10): 913-9.
17. Wang RL, Okazaki K. Artificial neural network for minimum crossing number problem,

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 2005, pp. 4201-4.

18. Kaveh A, Ilchi Gazaan M. Metaheuristic algorithms for minimum crossing number
problem, Int J Optim Civ Eng 2015; 5(1): 67-77.

19. Karaboga D. An idea based on honey bee swarm for numerical optimization, Technical
Report, Department of Computer Engineering, Faculty of Engineering, Erciyes University,
Erciyes, Turkey, 2005.

20. Erol OK, Eksin I. New optimization method: big bang-big crunch, Adv Eng Softw 2006;
37(2): 106-11.

META-HEURISTIC ALGORITHMS FOR MINIMIZING CROSSING NUMBER OF … 51

21. Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: a novel method
for constrained mechanical design optimization problems, Comput Aided Des 2011; 43(3):
303-15.

22. Yang XS, Deb S. Engineering optimisation by cuckoo search, Int J Math Model Numer
Optim 2010; 1(4): 330-43.

23. Kaveh A, Talatahari S. A novel heuristic optimization: charged system search algorithm,
Acta Mech 2010; 213(3-4): 267-89.

24. Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: tug of war optimization, Int J
Optim Civ Eng 2016; 6(4): 469-92.

25. Kaveh A, Bakhshpoori T. Water evaporation optimization: a novel physically inspired
optimization algorithm, Comput Struct 2016; 167(20): 69-85.

26. Kaveh A, Ilchi Ghazaan M. A new meta-heuristic algorithm: vibrating particles system, Sci
Iran Trans A Civ Eng 2017; 24(2): 551-66.

27. Harary F. Graph Theory, Addison-Wesley, Reading, Massachusetts, USA, 1972.
28. Abrego BM, Aichholzer O, Fernandez-Merchant S, Ramos P, Salazar G. Shellable drawings

and the cylindrical crossing number of ܭ, Discrete Comput Geom 2014; 52(4): 743-53.

