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ABSTRACT 
 

The minimum crossing number problem is among the oldest and most fundamental 
problems arising in the area of automatic graph drawing. In this paper, eight population-
based meta-heuristic algorithms are utilized to tackle the minimum crossing number 
problem for two special types of graphs, namely complete graphs and complete bipartite 
graphs. A 2-page book drawing representation is employed for embedding graphs in the 
plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch 
algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, 
Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation 
Optimization algorithm, and Vibrating Particles System algorithm. The performance of the 
utilized algorithms is investigated through various examples including six complete graphs 
and eight complete bipartite graphs. Convergence histories of the algorithms are provided to 
better understanding of their performance. In addition, optimum results at different stages of 
the optimization process are extracted to enable to compare the meta-heuristics algorithms.  
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1. INTRODUCTION 
 

Given a drawing ܵ of graph ܵ, the intersections which occur in the interiors of members are 
the crossings. The crossing number of a graph is the minimum number of crossings over all 
possible drawings of ܵ. Minimum crossing number problem is a classic and very important 
problem in graph drawing. This problem has important applications such as determining the 
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statical indeterminacy of skeletal structures, design of printed circuit board layout, VLSI 
circuit routing, automated graph drawing. The objective of the minimum crossing number 
problem is to embed the members of a graph so that the total number of crossings is 
minimized. For a general graph, there is no known formula by which the crossing number 
can be calculated. There is also no algorithm by means of which an optimal drawing can be 
obtained. In fact it is proven that the minimum crossing number problem is NP-complete [1]. 
Therefore, an approach for estimating crossing numbers, and the exact value of crossing 
number should be restricted to special graphs like complete graphs, bipartite graphs and 
cubic graphs. For these graphs only upper and lower bounds for crossing numbers are 
usually conjectured, but not proved to be exact. Graph theoretical studies for number of 
crossing have been performed by Kaveh [2-4], and Kaveh and Rahami [5]. 

Meta-heuristic algorithm can be applied to the minimum crossing number problem. 
Meta-heuristics try to combine randomization and rule-based theories which are almost 
always taken from natural phenomena such as evolution, characteristics of biological 
systems, social systems, swarm intelligence, and governing laws in different phenomena like 
basic physical laws [6]. Meta-heuristic algorithms are easy to implement and have found 
many applications in different areas of applied mathematics, engineering, medicine, 
economics and other sciences [7,8]. Many researchers have applied meta-heuristic 
algorithms for the minimum crossing number problem. Makinen and Sieranta [9] utilized 
genetic algorithms for drawing bipartite graphs. Valls et al. [10] applied a tabu thresholding 
algorithm to arc crossing minimization in bipartite graphs. Shahrokhi et al. [11] proposed 
two polynomial time algorithms to generate near optimal drawing of a graph on book. 
Cimikowski and Shope [12] employed a neural network algorithm for a graph layout 
problem. Laguna et al. [13] performed arc crossing minimization in hierarchical design with 
tabu search. Utech et al. [14] and Tettamanzi [15] utilized evolutionary algorithms for 
drawing graphs. Marti [16] employed a greedy randomized adaptive search procedure 
(GRASP) for minimum crossing number in graphs. Wang and Okazaki [17] proposed an 
improved Hopfield neural network for solving the minimum crossing number problem. 
Kaveh and Ilchi Ghazaan [18] applied particle swarm optimization, improved ray 
optimization, colliding bodies optimization, and enhanced colliding bodies optimization to 
the minimum crossing number problem.  

In this research, we try to solve the minimum crossing number problem for complete and 
complete bipartite graphs utilizing eight meta-heuristic algorithms. In other words, the aim 
of optimization is to find drawings with the least possible crossings. A 2-page book drawing 
is used for drawing the graphs. The algorithms consist of Artificial Bee Colony, Big Bang-
Big Crunch, Teaching-Learning-Based Optimization, Cuckoo Search, Charged System 
Search, Tug of War Optimization, Water Evaporation Optimization, and Vibrating Particles 
System. The codes for these algorithms are those of Kaveh and Bakhshpoori [8]. The 
objective of optimization is to minimize the number of crossing members. Various examples 
are provided to demonstrate the effectiveness of the meta-heuristic algorithms and to 
compare their performance. 
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2. MATERIALS AND METHODS 

 
2.1 Meta-heuristic algorithms 

Eight meta-heuristic algorithms are utilized to minimize crossing number of graphs. These 
algorithms are as follows: 1) Artificial Bee Colony (ABC) algorithm, 2) Big Bang-Big 
Crunch (BB-BC) algorithm, 3) Teaching-Learning-Based Optimization (TLBO) algorithm, 
4) Cuckoo Search (CS) algorithm, 5) Charged System Search (CSS) algorithm, 6) Tug of 
War Optimization (TWO) algorithm, 7) Water Evaporation Optimization (WEO) algorithm, 
and 8) Vibrating Particles System (VPS) algorithm. Kaveh and Bakhshpoori [8] coded these 
algorithms and performed some experimental evaluations to assess the performance of the 
algorithms in both aspects of convergence rate and accuracy. The maximum number of 
objective function evaluations is defined as the stopping criteria of the algorithms. The 
algorithms are introduced briefly in the following sections. 
 
2.1.1 Artificial bee colony algorithm (ABC) 

Swarm intelligence and group behavior of honey bees is the basic inspiration of some meta-
heuristics. The first one is the Artificial Bee Colony (ABC) algorithm which was introduced 
by Karaboga [19] based on the foraging behavior of honey bees. In ABC algorithm each 
candidate solution is represented by a food source, and its nectar quality represents the 
objective function of that solution. These food sources are modified by honey bees in a 
repetitive process manner with the aim of reaching food sources with better nectar. In ABC 
honey bees are categorized into three types: employed or recruited, onlooker, and scout bees 
with different tasks in the colony. Bees perform modification with different strategies 
according to their task. Employed bees try to modify the food sources and share their 
information with onlooker bees. Onlooker bees select a food source based on the 
information from employed bees and attempt to modify it. Scout bees perform merely 
random search in the vicinity of the hive. Hence ABC algorithm searches in three different 
sequential phases in each iteration. 

 
2.1.2 Big bang-big crunch algorithm (BB-BC) 

The Big Bang-Big Crunch (BB-BC) algorithm was developed by Erol and Eksin [20]. BB-
BC is taken from the prevailing evolutionary theory for the origin of universe: the Big Bang 
Theory. According to this theory, in the Big Bang phase, particles are drawn toward 
irregularity by losing energy, while in the Big Crunch phase, they converged toward a 
specific direction. Like other population-based meta-heuristics, BB-BC starts with a set of 
random initial candidate solutions, as the initial Big Bang. After each Big Bang phase, a Big 
Crunch phase should take place to determine a convergence operator by which particles will 
be drawn into an orderly fashion in the subsequent Big Bang phase. The convergence 
operator can be the weighted average of the positions of the candidate solutions or the 
position of the best candidate solution. These two contraction (Big Crunch) and dispersing 
(Big Bang) phases are repeated in the cyclic body of the algorithm in succession to satisfy a 
stopping criteria with the aim of steering the particles toward the global optimum.  
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2.1.3 Teaching-learning-based optimization algorithm (TLBO) 

Teaching-learning-based optimization (TLBO) algorithm was developed by Rao et al. [21] 
based on the classical school learning process. TLBO consists of two stages: effect of a 
teacher on learners and the influence of learners on each other. TLBO is initialized with a 
population of random solutions, named students or learners. The smartest student with the 
best objective function is assigned as the teacher in each iteration. Students are updated 
iteratively to search the optimum within two phases: based on the knowledge transfer from 
the teacher (teacher phase) and from interaction with other students (learner phase). In 
TLBO the performance of the class in learning or the performance of teacher in teaching is 
considered as a normal distribution of marks obtained by the students. TLBO improves other 
students in the teacher phase by using the difference between the teacher’s knowledge and 
the average knowledge of all the students. The knowledge of each student is obtained based 
on the position taken place by that student in the search space. In a class, students also 
improve themselves via interacting with each other after the teaching is completed by the 
teacher. In the learner phase, TLBO improves each student by the knowledge interaction 
between that student and another randomly selected one. 
 
2.1.4 Cuckoo search algorithm (CS) 

Cuckoo Search (CS) algorithm was developed by Yang and Deb [22] as an efficient 
population-based meta-heuristic inspired by the behavior of some cuckoo species. Cuckoos 
are fascinating birds because of their aggressive reproduction strategy. These species lay 
their eggs in the nests of other host birds. The host takes care of the eggs presuming that the 
eggs are its own. However, some of host birds are able to combat with this parasites 
behavior of cuckoos and throw out the discovered alien eggs or build their new nests in new 
locations. All the nests or eggs whether they belong to the cuckoos or host birds represent 
the candidate solutions in the search space. Cuckoos and host birds try to breed their own 
generation. In the cyclic body of the algorithm, two sequential search phases are performed 
by cuckoos and host birds. Firstly, cuckoos produce the eggs. In this phase eggs are 
produced by guiding the current solutions toward the best known solution. Then these new 
eggs are intruded to the nests of host birds based on the replacement strategy. After cuckoo 
breeding, it turns to the host birds. If a cuckoo’s egg is very similar to a host’s egg, then this 
cuckoo’s egg is less likely to be discovered. In this phase host birds discover a fraction of 
alien eggs and update them by adding them a random permutation-based step size. Based on 
the replacement strategy, host bird replaces the produced egg with the current one. These 
two search phases are repeated in the cyclic body of the algorithm until reaching to a 
stopping criteria. 
 
2.1.5 Charged system search algorithm (CSS) 

Charged System Search (CSS) algorithm was developed by Kaveh and Talatahari [23] as an 
efficient population-based meta-heuristic using some principles from physics and 
mechanics. CSS utilizes the governing Coulomb laws from electrostatics and the Newtonian 
laws of mechanics. In this algorithm each agent is a charged particle with a predetermined 
radius. The charge of magnitude of particles is considered based on their quality. Each 
particle creates an electric field, which exerts a force on other electrically charged objects. 
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Therefore, charged particles can affect each other based on their fitness values and their 
separation distance. The quantity of the resultant force is determined by using the 
electrostatics laws, and the quality of the movement is determined using Newtonian 
mechanics laws. In each iteration, transitions of particles can be induced by electric fields 
leading to particle-particle electrostatic interactions with the aim of attracting or repelling 
the particles toward the optimum position.  
 
2.1.6 Tug of war optimization algorithm (TWO) 

Inspired by the game tug of war, Kaveh and Zolghadr [24] developed a novel population-
based meta-heuristic algorithm denoted as Tug of War Optimization (TWO) algorithm. 
TWO considers each candidate solution as a team participating in a series of rope pulling 
competitions. The teams exert pulling forces on each other based on the quality of the 
solutions they represent. The competing teams move to their new positions according to 
Newtonian laws of mechanics. TWO starts from a set of randomly generated initial 
candidate solutions. Each candidate solution is considered as a team, and all population form 
a league. The weight of teams is determined based on the quality of the corresponding 
solutions, and the amount of pulling force that a team can exert on the rope is assumed to be 
proportional to its weight. Naturally, the opposing team will have to maintain at least the 
same amount of force in order to sustain its grip on the rope. The lighter team accelerates 
toward the heavier team, and this forms the convergence operator of TWO. In each iteration 
of the algorithm, the league is updated by a series of team-team rope pulling competitions 
with the aim of attracting teams toward the optimum position. 
 
2.1.7 Water evaporation optimization algorithm (WEO) 

Inspired by evaporation of a tiny amount of water molecules on the solid surface with 
different wettability, Kaveh and Bakhshpoori [25] developed a novel meta-heuristic called 
Water Evaporation Optimization (WEO). This algorithm considers water molecules as 
algorithm individuals. Solid surface or substrate with variable wettability is reflected as the 
search space. Decreasing the surface wettability (substrate changed from hydrophilicity to 
hydrophobicity) reforms the water aggregation from a monolayer to a sessile droplet. Such a 
behavior is consistent with how the layout of individuals changes to each other as the 
algorithm progresses. Decreasing wettability of the surface can represent the decrease of 
objective function for a minimizing optimization problem. Evaporation flux rate of the water 
molecules is considered as the most appropriate measure for updating the individuals which 
its pattern of change is in good agreement with the local and global search ability of the 
algorithm and can help WEO to have significantly well-converged behavior and simple 
algorithmic structure.  
 
2.1.8 Vibrating particles system algorithm (VPS) 

Vibrating Particles System (VPS) algorithm is a new meta-heuristic search algorithm 
developed by Kaveh and Ilchi Ghazaan [26]. VPS is motivated based on the free vibration of 
single degree of freedom systems with viscous damping. Like other population-based meta-
heuristics, VPS starts from a random set of initial solutions and considers them as the free 
vibrated single degree of freedom systems with viscous damping. Considering under-
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damped conditions, each free vibrated system or vibrating particle will oscillate and return to 
its equilibrium position. By utilizing a combination of randomness and exploitation of the 
obtained results, VPS improves the quality of the particles iteratively by oscillating them 
toward the equilibrium position, as the optimization process proceeds. Consider the 
equilibrium position of each particle, consisting of three parts, the best position achieved so 
far across the entire population (HP), a good particle (GP), and a bad particle (BP). In this 
way the essence of VPS stands on three essential concepts, self-adaptation (particle moves 
toward HB), cooperation (the GP and BP, which are selected from particles themselves, can 
influence the new position of particles), and competition (the influence of GP will be more 
than that of BP). 

 
2.2 Definition of the optimization problem 

A graph ܵ consists of a set of elements called nodes and a set of elements called members 
together with a relation of incidence which associates each member with a pair of nodes, 
called its ends. Two nodes of a graph are called adjacent if these nodes are the end nodes of 
a member. A member is called incident with a node if it is an end node of that member. Two 
members are called incident if they have a common end node. A complete graph is a graph 
in which every two distinct nodes are connected by exactly one member, Fig. 1. A complete 
graph with ܰ nodes is denoted by ܭே.  
 

 
Figure 1. Some complete graphs 

 
A graph is called bipartite, if the corresponding node set can be split into two sets ଵܰ and 

ଶܰ in such a way that each member of ܵ joins a node of ଵܰ to a node of ଶܰ. A complete 
bipartite graph is a bipartite graph in which each node ଵܰ is joined to each node of ଶܰ by 
exactly one member. If the number of nodes in ଵܰ  and ଶܰ  are denoted by ݎ  and ݏ , 
respectively, then a complete bipartite graph is denoted by ܭ,௦. Examples of bipartite and 
complete bipartite graphs are shown in Fig. 2.  
 

 
                             (a) A bipartite graph                  (b) A complete bipartite graph (ܭଷ,ସ) 

Figure 2. Two bipartite graphs 
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A drawing ܵ of a graph ܵ in the plane is a mapping of the nodes of ܵ to distinct points of 
ܵ, and the members of ܵ to open arcs of ܵ such that [3]: 
(i) the image of no member contains that of any node; 
(ii) the image of a member (݊, ݊) joins the points corresponding to ݊ and ݊. 

A drawing is called admissible if the members are such that: 
(i) no two arcs with a common end point meet; 
(ii) no two arcs meet in more than one point; 
(iii) no three arcs meet in a common point.  

A point of intersection of two members in a drawing is called a crossing, and the crossing 
number ܿሺܵሻ of a graph ܵ is the number of crossings in any admissible drawing of ܵ in the 
plane. An optimal drawing in a given surface is one which exhibits the least possible 
crossings. It is proven that for given graph ܵ and an integer ݇, the question ܿሺܵሻ  ݇ is NP-
complete [1]. There are conjectures for the crossing number of both the complete and 
complete bipartite graphs [27]: 
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2
൨ 
ܰ െ 1
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൨ 
ܰ െ 2
2

൨ 
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ݏ
2
ቃ 
ݏ െ 1
2
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where ܿሺܭேሻ is the crossing number of the complete graph ܭே. It should be noted that the 
equation (1) has been confirmed only for ܰ  12. The smallest unsolved case is ܭଵଷ with 
conjectured crossing number 225. Furthermore, ܿ൫ܭ,௦൯  is the crossing number of the 
complete bipartite graph ܭ,௦. The equation (2) is known to be true for ݎ  6 and all ݏ, and 
also for ݎ ൌ 7 when ݏ  10 [18]. 

Towards the end of the century, substantially different drawings of ܭே were found, such 
as cylindrical drawing, 2-page book drawing, monotone drawing, shellable drawing, etc. To 
this date, no drawing of ܭே with fewer than ܿሺܭேሻ crossings is known [28]. In the 2-page 
book drawing representation which is used here, all the nodes of the graph are on a line and 
each member is embedded in either the upper page or the lower page defined by the line 
[28]. A 2-page book drawing of ଼ܭ is shown in Fig. 3.  

 

 
Figure 3. A 2-page book drawing of ଼ܭ 
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Any pair of members ݆݅ and ݈݇ cross in a drawing if ݅ ൏ ݇ ൏ ݆ ൏ ݈ and both lie in the 
same page. The state ݕ ൌ 1 indicates that the member between nodes ݅ and ݆ (the member 
݆݅) is embedded in the upper page, and the state ݕ ൌ 0 indicates that the the member ݆݅ is 
embedded in the lower page. The number of members in a given graph determines the 
number of design variables of the optimization problem. The linear crossing number 
problem can be mathematically stated as finding the minimum of the following objective 
function [17]: 

 

ݎܾ݁݉ݑ݊	݃݊݅ݏݏݎܿ ൌ
1
2
൫ ݃. ݃. ݀. .ݕ ൯ݕ 



1
2
ቀ ݃. ݃. ݀. ሺ1 െ .ሻݕ ሺ1 െ ሻቁݕ



 (3)

 
where ݀ is crossing condition and can be stated as follows: 
 

݀ ൌ ൜
1, ݂݅ ݅ ൏ ݆ ൏ ݇ ൏ ݈ ݎ ݇ ൏ ݅ ൏ ݈ ൏ ݆
0, ݁ݏ݅ݓݎ݄݁ݐ

 (4)

 
݃ indicates whether the member ݆݅ exist.  
 

݃ ൌ ൜
1, ݂݅ ݎܾ݁݉݁݉ ݆݅ ݐݏ݅ݔ݁
0, ݁ݏ݅ݓݎ݄݁ݐ

 (5)

 
 

3. RESULTS AND DISCUSSION 
 

Six complete graphs ( ,଼ܭ ,ଽܭ ,ଵܭ ,ଵଵܭ ,ଵଶܭ ଵଷܭ ) and eight complete bipartite graphs 
,ଷ,ଵܭ) ,ଷ,ଵହܭ ,ସ,ହܭ ,ସ,ଵܭ ,ସ,ଵହܭ ,ହ,ହܭ ,ହ,ଵܭ  ହ,ଵହ) are studied to illustrate the efficiency of theܭ
algorithms. Optimization results of all algorithms are presented in Tables 1 to 6. Tables 1 to 
3 shows the optimum results for complete graphs, and the results in Tables 4 to 6 are those 
of the complete bipartite graphs. Optimum solutions at four different stages of the 
optimization process are provided in Tables 3 and 6 for complete and complete bipartite 
graphs, respectively. These two tables enable us to compare the performance of meta-
heuristics algorithms. The average and standard deviation of results are shown in the Tables 
2 and 5 for complete and complete bipartite graphs, respectively. Convergence histories of 
all graphs are depicted in Figs. 7 to 20. The maximum number of objective function 
evaluations is different for each graph. For instance, this parameter is set to 500 for ଼ܭ and 
 obtained ଼ܭ ଵଷ. Embeding of the complete graphܭ ଵଶ andܭ ଽ, while this is set to 2000 forܭ
by TLBO is shown in Fig. 4. Fig. 5 shows the embeding of the complete bipartite graph 
 ସ,ଵ obtained by WEOܭ ଷ,ଵ obtained by CSS. In addition, embeding of the complete graphܭ
is shown in Fig. 6. The optimization results show that the algorithms have relatively close 
performances for small complete and complete bipartite graphs which demonstrates the high 
performance of the algorithms. A careful examination of Figs. 11, 12, 17, and 20 reveals that 
TWO, CS, CSS, and WEO have better performance for larger complete and complete 
bipartite graphs (ܭଵଶ, ܭଵଷ, ܭସ,ଵହ, ܭହ,ଵହ) in both aspects of convergence rate and accuracy 
compared to other used algorithms. These algorithms also have better results in terms of the 
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average and standard deviation of results. As it can be seen from Tables 1, TWO, CS, CSS, 
and WEO converge to the global optimum (optimal drawing) for all complete graphs. On the 
contrary, an examination of Table 4 reveals that for some of the complete bipartite graphs 
(e.g. ܭସ,ହ, ܭହ,ହ, ܭହ,ଵ), TWO, CS, CSS, and WEO converge to identical solutions close to the 
optimal drawing, but not equal. The reason is that these drawings are the best possible ones 
which can be found in a 2-page book drawing. In other words, by mean of the 2-page book 
drawing, it is impossible to find an embedding with fewer crossings for the above mentioned 
graphs.  
 

Table 1: Optimal results obtained for the complete graphs 

Graph Minimum ABC BB-BC TLBO CS CSS TWO WEO VPS 
 18 18 18 18 18 18 18 18 18 ଼ܭ
 ଽ 36 36 36 36 36 36 36 36 36ܭ
 ଵ 60 60 60 60 60 60 60 60 60ܭ
 ଵଵ 100 100 100 100 100 100 100 100 100ܭ
 ଵଶ 150 150 150 153 150 150 150 150 155ܭ
 ଵଷ - 227 225 229 225 225 225 225 231ܭ

 
Table 2: Statistical results of the complete graphs 

Graph  ABC BB-BC TLBO CS CSS TWO WEO VPS 

 ଼ܭ
Average 19.42 20.37 18.57 19.28 18.44 19.21 18.56 19.66 
Std. dev. 2.20 2.22 1.17 1.21 1.22 0.88 0.81 1.87 

No. of analyses 500 500 500 500 500 500 500 500 

 ଽܭ
Average 37.24 37.4 37.04 37.2 37.24 36.48 37.44 37.81 
Std. dev. 3.05 3.73 3.16 1.94 2.70 1.69 3.06 4.88 

No. of analyses 500 500 500 500 500 500 500 500 

 ଵܭ
Average 62.85 63.46 64.86 63.19 65.06 63.05 63.53 67.69 
Std. dev. 5.53 6.79 7.76 5.28 6.90 5.27 6.88 6.96 

No. of analyses 1000 1000 1000 1000 1000 1000 1000 1000 

 ଵଵܭ
Average 102.44 104.81 103.14 103.18 107.40 104.47 102.92 107.51 
Std. dev. 5.72 7.43 7.37 9.08 11.05 10.64 7.71 8.00 

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500 

 ଵଶܭ
Average 159.67 158.84 160.62 157.13 156.49 156.25 157.40 177.44 
Std. dev. 12.61 15.94 15.71 16.03 15.01 16.73 16.66 16.11 

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000 

 ଵଷܭ
Average 237.92 236.33 251.43 236.18 234.25 230.45 234.66 248.34 
Std. dev. 18.91 23.52 17.83 22.63 22.99 15.92 22.23 24.69 

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000 
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Table 3: Optimum results at different stages of optimization (complete graphs) 

Graph 
No. of 

analyses 
ABC BB-BC TLBO CS CSS TWO WEO VPS 

 ଼ܭ

125 19 19 18 20 18 20 19 21 
250 19 18 18 19 18 20 18 19 
375 18 18 18 18 18 18 18 18 
500 18 18 18 18 18 18 18 18 

 ଽܭ

125 36 36 36 40 38 36 38 36 
250 36 36 36 36 36 36 36 36 
375 36 36 36 36 36 36 36 36 
500 36 36 36 36 36 36 36 36 

 ଵܭ

250 63 63 63 63 64 63 66 68 
500 61 61 62 61 62 61 60 67 
750 60 60 61 60 61 60 60 63 
1000 60 60 60 60 60 60 60 60 

 ଵଵܭ

375 102 100 100 102 108 102 104 116 
750 100 100 100 100 102 100 100 104 
1125 100 100 100 100 102 100 100 102 
1500 100 100 100 100 100 100 100 100 

 ଵଶܭ

500 160 162 161 156 154 153 154 178 
1000 157 150 153 153 150 150 150 176 
1500 152 150 153 150 150 150 150 167 
2000 150 150 153 150 150 150 150 155 

 ଵଷܭ

500 233 231 259 233 233 225 231 249 
1000 233 225 251 227 225 225 225 241 
1500 227 225 235 225 225 225 225 231 
2000 227 225 229 225 225 225 225 231 

 
Table 4: Optimal results obtained for the complete bipartite graphs 

Graph Minimum ABC BB-BC TLBO CS CSS TWO WEO VPS 
 ଷ,ଵ 20 20 20 20 20 20 20 20 20ܭ
 ଷ,ଵହ 49 49 49 49 49 49 49 49 49ܭ
 ସ,ହ 8 10 10 10 10 10 10 10 10ܭ
 ସ,ଵ 40 54 54 54 54 54 54 54 54ܭ
 ସ,ଵହ 98 130 130 132 130 130 130 130 133ܭ
 ହ,ହ 16 20 20 20 20 20 20 20 20ܭ
 ହ,ଵ 80 100 100 100 100 100 100 100 100ܭ
 ହ,ଵହ 196 252 244 262 244 244 244 244 252ܭ
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Table 5: Optimum results at different stages of optimization (complete bipartite graphs) 

Graph 
No. of 

analyses 
ABC BB-BC TLBO CS CSS TWO WEO VPS 

 ଷ,ଵܭ

125 23 22 23 31 20 31 28 29 
250 20 20 20 20 20 21 20 20 
375 20 20 20 20 20 20 20 20 
500 20 20 20 20 20 20 20 20 

 ଷ,ଵହܭ

250 67 49 55 57 53 61 59 91 
500 51 49 49 49 49 49 49 85 
750 49 49 49 49 49 49 49 57 
1000 49 49 49 49 49 49 49 49 

 ସ,ହܭ

100 10 10 10 10 11 10 10 10 
200 10 10 10 10 10 10 10 10 
300 10 10 10 10 10 10 10 10 
400 10 10 10 10 10 10 10 10 

 ସ,ଵܭ

200 57 54 71 60 54 60 54 75 
400 54 54 54 54 54 54 54 66 
600 54 54 54 54 54 54 54 57 
800 54 54 54 54 54 54 54 54 

 ସ,ଵହܭ

375 165 140 176 156 132 130 130 185 
750 148 130 156 133 130 130 130 174 
1125 130 130 156 130 130 130 130 148 
1500 130 130 132 130 130 130 130 133 

 ହ,ହܭ

100 20 20 24 24 26 24 20 20 
200 20 20 20 20 20 20 20 20 
300 20 20 20 20 20 20 20 20 
400 20 20 20 20 20 20 20 20 

 ହ,ଵܭ

375 102 103 113 100 100 103 101 133 
750 101 100 100 100 100 100 100 100 
1125 100 100 100 100 100 100 100 100 
1500 100 100 100 100 100 100 100 100 

 ହ,ଵହܭ

500 336 262 370 348 252 262 270 384 
1000 278 256 342 302 244 244 244 312 
1500 262 244 294 256 244 244 244 280 
2000 252 244 262 244 244 244 244 252 
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Table 6: Statistical results of the complete bipartite graphs 

Graph  ABC BB-BC TLBO CS CSS TWO WEO VPS 

 ଷ,ଵܭ
Average 23.50 26.66 23.10 26.77 22.33 25.1 25.70 24.68 
Std. dev. 8.54 8.92 6.44 12.59 5.87 8.49 10.10 6.69 

No. of analyses 500 500 500 500 500 500 500 500 

 ଷ,ଵହܭ
Average 59.70 55.85 60.18 58.82 55.00 61.74 58.30 81.95 
Std. dev. 16.98 19.28 20.05 21.24 15.14 22.85 16.37 24.34 

No. of analyses 1000 1000 1000 1000 1000 1000 1000 1000 

 ସ,ହܭ
Average 10.65 11.58 11.22 11.53 10.40 10.67 11.32 10.64 
Std. dev. 2.55 4.23 3.00 3.99 0.99 2.32 3.32 2.22 

No. of analyses 400 400 400 400 400 400 400 400 

 ସ,ଵܭ
Average 59.58 60.94 61.63 62.14 59.4 60.98 59.03 67.88 
Std. dev. 14.51 15.27 11.51 17.22 13.32 16.85 14.51 15.36 

No. of analyses 800 800 800 800 800 800 800 800 

 ସ,ଵହܭ
Average 156.88 151.43 170.70 150.92 141.29 149.98 144.48 176.66 
Std. dev. 36.62 38.16 35.54 34.99 30.60 41.77 35.05 40.72 

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500 

 ହ,ହܭ
Average 21.56 22.06 22.74 22.22 22.40 21.82 22.41 22.76 
Std. dev. 5.26 5.26 4.84 4.51 3.48 3.53 5.45 7.01 

No. of analyses 400 400 400 400 400 400 400 400 

 ହ,ଵܭ
Average 108.17 109.58 110.83 106.71 109.09 108.32 109.62 114.52 
Std. dev. 19.59 23.34 22.84 20.33 23.35 20.51 23.96 25.39 

No. of analyses 1500 1500 1500 1500 1500 1500 1500 1500 

 ହ,ଵହܭ
Average 302.24 269.13 340.48 310.51 274.27 269.93 270.15 333.34 
Std. dev. 61.40 47.14 49.61 69.55 63.20 51.69 54.43 57.64 

No. of analyses 2000 2000 2000 2000 2000 2000 2000 2000 

 

 
Figure 4. Embeding of the complete graph ଼ܭ obtained by TLBO 
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Figure 5. Embeding of the complete 

bipartite graph ܭଷ,ଵ obtained by CSS 
 

 
Figure 6. Embeding of the complete 

bipartite graph ܭସ,ଵ obtained by WEO 
 

 
Figure 7. Convergence histories for ଼ܭ  

 

 
Figure 8. Convergence histories for ܭଽ 

 

 
Figure 9. Convergence histories for ܭଵ 

 

 
Figure 10. Convergence histories for ܭଵଵ 
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Figure 11. Convergence histories for ܭଵଶ 

 

 
Figure 12. Convergence histories for ܭଵଷ 

 

 
Figure 13. Convergence histories for ܭଷ,ଵ 

 

 
Figure 14. Convergence histories for ܭଷ,ଵହ 

 

 
Figure 15. Convergence histories for ܭସ,ହ 

 

 
Figure 16. Convergence histories for ܭସ,ଵ 
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Figure 17. Convergence histories for ܭସ,ଵହ 

 

 
Figure 18. Convergence histories for ܭହ,ହ 

 

 
Figure 19. Convergence histories for ܭହ,ଵ 

 

 
Figure 20. Convergence histories for ܭହ,ଵହ 

 
4. CONCLUSION 

 
In this paper, eight population-based meta-heuristic algorithms are employed for the 
minimum crossing number problem in complete graphs and complete bipartite graphs. The 
algorithms consist of Artificial Bee Colony, Big Bang-Big Crunch, Teaching-Learning-
Based Optimization, Cuckoo Search, Charged System Search, Tug of War Optimization, 
Water Evaporation Optimization, and Vibrating Particles System. A 2-page book drawing 
representation is used for embedding the graphs. The objective of optimization is to 
minimize the crossing number of complete and complete bipartite graphs. All the utilized 
algorithms can find optimal or near optimal drawings rapidly and have an acceptable 
performance for the minimum crossing number problem. The results indicate superiority of 
the CS, CSS, TWO, and WEO algorithms in both aspects of convergence rate and accuracy 
compared to other employed algorithms. The convergence histories of the mentioned 
algorithms indicate that they have a close performance.  
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