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ABSTRACT 
 

In order to evaluate the damage state, value, and position of structural members more 

accurately, a multi-objective optimization (MO) method is utilized that is based on changes 

in natural frequency. The multi-objective optimization dynamic-based damage detection 

method is first introduced. Two objective functions for optimization are then introduced in 

terms of changing the natural frequencies and mode shapes. The multi-objective 

optimization problem (MOP) is formulated by using the two objective functions. Three 

considered MO algorithms consist of Colliding Bodies Optimization (MOCBO), Particle 

Swarm Optimization (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) to 

achieve the best structural damage detection. The proposed methods are then applied to three 

planar steel frame structures. Compared to the traditional optimization methods utilizing the 

single-objective optimization (SO) algorithms, the presented methods provide superior 

results. 
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1. INTRODUCTION 
 

For structural health monitoring, it is necessary to use non-destructive methods to obtain 
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information about the presence. location, and extent of damages. Monitoring and 

interpreting changes in structural dynamic properties by measurements and the use of 

experimental modal analyses via signal-processing techniques is a usual method [1]. Modern 

vibration testing equipment and instrumentation can be utilized to extract the natural 

frequency and mode shape of a vibrating structural system. Optimization algorithms are 

powerful means to detect structural damages and can efficiently be used for data analysis to 

identify potential damage locations. 

Several methods have been developed to find structural damages by measuring the 

change of the natural frequencies [2-11].  This problem can be formulated as a bounded 

nonlinear optimization problem and finding the best solution. The main idea is to alter the 

characteristic of numerical models to match the experimental data values, highlighting 

damaged regions and the extent of damage in the structure. An optimization algorithm aims 

at finding the optimal parameters values, which are the reduction factors of element 

stiffness, to achieve a pre-defined performance based on the modal parameters outlined by 

the experimental data. This process results in a target performance optimization problem, 

which is highly challenging to solve due to the presence of non-convex and multimodal 

objective functions. The deterministic optimization algorithms may not converge to the 

global minimum of the problem due to their dependence on the quality of the starting point 

of the search. With the rapid development of the computation technologies, the problem has 

been solved using recent metaheuristics such as the genetic algorithm (GA) the bee 

algorithm (BA) [12], the PSO algorithm [19], the HS algorithm [20], and the improved CSS 

algorithm [21] and the CBO algorithm [13]. However, all the above methods were based on 

the optimization of a single objective optimization, which is defined as the difference 

between measured and theoretical output data. The structural complexity makes it 

impossible for these algorithms to identify the damage in these works. To improve the 

search capability, it is necessary to adopt strategies that increase the efficiency. 

This study presents the damage detection of frame structures based on changes in the 

natural frequencies using muti-objective optimization algorithms (MOAs). The main 

contributions of this research work are as follows: 

(i) This study introduces an extension of MOA to damage detection in frame 

structures through numerical examples;  

(ii) This problem is solved using the recent MOAs and a comparative study is 

carried out;  

(iii) A comparison is made between the results achieved using MOAs and the 

traditional strategy based on SOAs. 

The present paper is organized as follows: In the next section, the problem formulations 

of detecting damage in structures is provided. The optimization algorithms are then 

explained, followed by a section consisting of the study of three damage detection problems 

of frame structural. Conclusions are derived in the last section. 

 

 

2. PROBLEM FORMULATION 
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The structural modal property is an important indicator for structural damage identification. 

To depict the damaged state of a structure, the simplest way is to measure the stiffness 

properties of a structure. The change in mass is expected to be insignificant compared to 

stiffness [6]. The global stiffness matrix of the damaged structure ([𝑘𝑑]) can be obtained as 

the summation of the damaged and undamaged element stiffness matrices ([𝑘𝑒]), where the 

reduction factor (αi) multiplies the stiffness of the damaged local element ([𝑘𝑒
𝑑]), such as: 
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Where N is the number of structural elements. The reduction factor (αi) indicates the 

severity of the damage in the ith element of the finite element model whose values are 

between 0 for elements having no damage and 1 for ruptured elements. The factors α and (1-

α) are also defined as the damage and health severity, respectively. Moreover, it is assumed 

that no change occurs after damage in the mass matrix [𝑀], which seems to be reasonable in 

most of the real problems. 

The jth eigenvalue equation of the damaged structure can be generated by replacing 

the structure’s stiffness matrix by that of the damaged one: 
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in which, 𝜔𝑗𝑑  and 𝜑𝑗𝑑   are the jth natural frequency and the jth shape mode of the 

damaged structure, respectively.  

In the single objective classic optimization problem, the objective function is 

expressed as the fractional changes in natural frequencies and mode shapes before and after 

damage: 
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Where, NM is the number of analyzed modes, NP is the number of nodal displacement 

that is measured, the superscripts D and E represent numerical and experimental quantities, 

respectively, ωi is the natural frequency for the ith mode of the undamaged state, 𝛿𝜔𝑖 and 

𝛿𝜑𝑖𝑗  are fractional change of the experimental and analytical natural frequencies and 

displacement nodal for the ith mode of the structure, respectively. Until the differences in 

the numerical frequencies between healthy and damaged states converge to the observed 

experimental frequencies in the pre and post damaged states, the stiffness reduction factor 

(𝛼) of the finite element model should be updated [7]. 

The problem mentioned earlier was solved by the SO algorithms, and the number of 

variables was the same as the number of structural elements. By increasing the number of 

variables, these algorithms prevented finding the best solution, particularly when dealing 
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with frame structure damage detection problems. Then, it was essential to adopt a strategy to 

enhance the search space exploration in this optimization problem.  

In this study, MO algorithms are utilized to detect damage in structures. MO algorithms 

aim to find stiffness reduction factors (𝛼) for the finite element model that simultaneously 

minimize the objective functions defined by Eq. (4). These objective functions (F1 and F2) 

represent the differences in the natural frequency and node displacement between healthy 

and damaged states. 

 

 

( ) ( )( )

2

1

1

2

2

1 1

( )
( )

( ) ( )

D E
NM

i i

i i i

NM NP
D E

ij ij

i j

F

F

  


 

   

=

= =

    
 = −   
     

= −





 (4) 

 

The objective functions in MO algorithms must be in conflict with each other, such as 

when one objective function increases, the other decreases. In this case, the user is given a 

set of solutions (referred to as the Pareto front) by multi-objective algorithms. The objective 

functions employed in this research are in accordance with one another, and they are only 

used to find the optimal point in the problem search space as accurately as possible. The 

purpose of the damage detection is to find a single solution that shows the structure's 

damage status. Hence, if the multi-objective algorithm only gives one solution, that point is 

the optimal one. Otherwise, the best solution in the Pareto front will be chosen using the 

Knee point method described in Reference [18]. Figure 1 displays the flow chart of the 

proposed method. 

 

Figure 1. The general flowchart of the proposed method 
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3. OPTIMIZATION ALGORITHMS 
 

As mentioned before, the MOCBO, MOPSO and NSGA-II algorithms have been employed 

for solving Eq. (4). In this section, these algorithms are briefly presented. 

 

3.1 Multi-Objective Colliding Bodies Optimization Algorithm 

Algorithm 1 is named 'multi-objective colliding bodies optimization' (MOCBO) because 

it utilizes the CBO formulation for the search process. This algorithm aims to find optimal 

solutions for multiple objective optimization problems by simulating the interactions and 

collisions between bodies representing potential solutions [14,15]. 

 

Algorithm 1 Multi-objective colliding bodies optimization (MOCBO) 

Initialize 

 Generate an initial population of candidate solutions (bodies) 

 Evaluate the objectives for each body 

 Initialize the non-dominated archive 

Begin 

 While (termination condition is met) do 

        Evaluate the maximin value of each solution 

        Arrange the populations  

        Divide the populations inti two equal groups 

        Determine the collision between bodies 

        Update the positions of the bodies 

        Update the non-dominated archive 

 End While 

End 

 

3.2 Multi-objective Particle Swarm Optimization Algorithm 

In the field of multi-objective optimization, MOPSO is a metaheuristic optimization 

algorithm that has been widely utilized. In the MOPSO a population of candidate solutions 

called particles iteratively searches for optimal solutions by moving through the search space 

based on the best solutions so far found [16]. The evaluation of solution quality by using 

Pareto's dominance is the main concept behind MOPSO. The MOPSO algorithm maintains 

track of both the global and personal best position for every particle (Algorithm 2). 

 

Algorithm 2 Multi-objective particle swarm optimization (MOPSO) 

Initialize 

 Initialize the population of particles 

 Assign random velocities to each particle 

 Evaluate the objectives for each particle 

 Initialize the non-dominated archive 



A. Kaveh and V.R. Mahdavi 

 

342 

Begin 

 While (stopping criteria are NOT satisfied) do 

        For each particle 

             Update the personal best solution (pbest) 

             Update the global best solution (gbest) 

             Update the velocity and position of each particle 

        End For 

       Update the non-dominated archive 

 End While 

End 

 

3.3 Non-dominated Sorting Genetic Algorithm-II 

The Non-dominated Sorting Genetic Algorithm-II, known as NSGA-II, is a commonly 

utilized multi-objective optimization technique that aims to discover a set of non-dominated 

solutions in a given search domain [17]. NSGA-II works by maintaining a population of 

candidate solutions and evolving them over multiple generations. It uses techniques like 

non-dominated sorting diversity preservation and elitism to push the search process towards 

the Pareto-optimal front where no other solution is better among all objectives 

simultaneously. 

In order to preserve diversity of the population, it evaluates individuals according to their 

dominant relationship with each other and assigns them ranks and crowding distances. By 

selecting the best individuals through a combination of dominance and diversity measures, 

NSGA-II is able to achieve an efficient approximation of the Pareto front (Algorithm 3). 

 

Algorithm 3 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

Initialize 

 Generate an initial population of candidate solutions randomly 

 Evaluate the objective function values for each individual in the population 

 Initialize the non-dominated archive 

Begin 

 While (termination condition is met) do 

        Calculate the crowding distance for individuals in each Pareto front  

        Select individuals for the next generation 

        Perform crossover and mutation operators on the selected individuals 

        Combine the current population and offspring to form a new population 

        Update the non-dominated archive 

 End While 

End 

 

It will be interesting to use force method in place of the displacement approach. To 

achieve this other application of the force method can be found in Refs. [22-27]. 
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4. NUMERICAL EXAMPLES 
 

In this section three planar frame structures are considered for the numerical study to 

evaluate the feasibility and effectiveness of the proposed methods. In addition, the SO 

algorithms have been employed in the first example to compare the results of the adopted 

method with classic methods. In all the examples, a total of 100 populations are used for all 

MO and SO algorithms. For the first, second and third examples, the maximum number of 

iterations is considered as 200, 400 and 400, respectively. The programming language used 

for writing the algorithms is Matlab. In all of the examples, two damage scenarios are 

utilized as elements that decrease Young's modulus. The first and second damage scenarios 

are described as single and multiple damage cases, respectively. 

 

4.1. Example 1: A portal plane frame 

A planar steel frame with 56 equal-length beam elements and 57 nodes that is considered 

the first example as shown in Figure 2. The material density is taken as 
32500 /kg m  and the 

modulus of elasticity is considered as 25,000 MPa.  The structure is rectangular in shape 

with a cross-sectional area of h=0.24m high and b=0.14m wide [9]. Table 1 shows that the 

reduction factor determines the damage severity of each element in both damage scenarios 

of this example: (1) 20% damage in element 1, (2) 15% damage in element 10 and 20% 

damage in element 22. The objective functions employed in this example are described by 

Equation (3) and Equation (4) for the SO and MO algorithms, respectively. The mode 

shapes in these equations incorporated the initial 16 natural frequencies and all the nodal 

displacements. 

 

Figure 2. A portal plane frame 

 

Figure 3 shows the predicted health severities (1-α) in elements using the SO algorithms. 

It can be seen that these algorithms cannot solve this problem and makes a mistake in 

finding the damage in structural elements 
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(a) 

 

(b) 

Figure 3. The obtained damage severities of SO algorithms for the first example: a) scenario 

1, b) scenario 2 

 

Figure 4 shows the trade-off between the objective functions introduced in Eq. (4) using 

three multi-objective optimization methods. Since the PF sets have more than one solution, 

the best solution is chosen using the Knee point method described in Ref. [18]. The best 

0

0.2

0.4

0.6

0.8

1
1

2 3 4 5
6

7
8

9
10

11
12
13
14
15
16
17

18
19

20
21

22
23

24
25262728

29
30313233

34
35

36
37

38
39

40
41
42
43
44
45
46
47

48
49

50
51

52
53545556

Exact CBO GA PSO

0

0.2

0.4

0.6

0.8

1
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15
16
17

18
19

20
21

22
23

24
25262728

29
30313233

34
35

36
37

38
39

40
41
42
43
44
45
46
47
48

49
50

51
52

53545556

Exact CBO GA PSO



STRUCTURAL DAMAGE IDENTIFICATION BASED ON CHANGES IN … 

 

345 

solutions found using MO algorithms are also displayed in Figure 4 with a star symbol. The 

PF set obtained through MOCBO is dominated by those obtained through MOPSO and 

NSGA-II, as can be observed. Table 1 displays the best solutions found in this example 

using MO algorithms. Figure 5 also illustrates the most accurate predictions of the amount 

of damage occurs in different elements using MO algorithms. By comparison, one can see 

that the predicted severity damage using MOCBO is closer to the exact value compared to 

the outcome of the NSGA-II and MOPSO. 

 

 

(a) 

 

(b) 
Figure 4. The obtained Pareto Front of MO algorithms for the first example: a) scenario 1, b) 

scenario 2 (Stars represent the best solutions in PF sets) 
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Table 1. Results obtained by different MO algorithms for both damage scenarios in the first 

example 

 
Damage 

location 

Exact severity 

damage (%) 

Predicted severity damage (%) 

MOCBO MOPSO NSGA-II 

Scenario 1 1 20 19.186 14.870 18.163 

Scenario 2 
10 15 18.886 23.365 19.191 

22 20 23.541 28.642 25.853 

 

 

(a) 

 

(b) 
Figure 5. The obtained health severities of MO algorithms for the first example: a) scenario 1, 

b) scenario 2 
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4.2. Example 2: A two-bay and three-story plane frame 

A two-bay and three-story plane steel frame, as shown in Figure 6, with a 36-element 

model consisting of nine columns and six beams, and 30 free nodes is examined as the 

second example. The structural beams are divided into three equal elements and the columns 

are divided into two equal elements. The frame structure model is made up of 36 two-

dimensional beams. The material density is 7708 kg/m3 and the modulus of elasticity is 207 

GPa. The moment of inertia, and cross-sectional area of the all elements are considered as 

I=3.3×104 m4 and A=1.5×102 m2, respectively. 

In this example, the severity of the damage in each element is shown by the reduction 

factor in Table 2 for both damage scenarios: (1) 10% damage in element 6, (2) 15% damage 

in element 10 and 20% damage in element 22. In this example, the first 15 natural 

frequencies and all the nodal displacements in the mode shapes are used. 

 

 
Figure 6. A 2-bay and 3-story frame with the finite-element model 

 
Table 2. Results obtained by different MO algorithms for both damage scenarios in the second 

example 

 
Damage 

location 

Exact severity 

damage(%) 

Predicted severity damage(%) 

MOCBO MOPSO NSGA-II 

Scenario 1 2 40 39.165 5.466 36.625 

Scenario 2 
2 10 10.006 14.852 10.553 

5 20 19.101 19.151 19.590 

 

The trade-off’s curves and best solutions obtained in this example using three provided 

multi-objective optimization algorithms are shown in Figure 7. It is clear that the PF set 

from MOCBO is dominated by the ones from MOPSO and NSGA-II. Table 2 displays the 

best solutions found in this example using MO algorithms. Figure 8 shows the predicted 
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health severities (1- α) in the elements using the proposed MO algorithms. The most precise 

estimates of how much damage will be involved in various elements by the MO algorithms 

are also presented in Figure 8. Similar to the first example, one can see that MOCBO 

predicts the damage severity better than NSGA-II and MOPSO. 

 

 
(a) 

 
(b) 

Figure 7. The obtained Pareto Front of MO algorithms for the second example: a) scenario 1, 

b) scenario 2 (Stars represent the best solutions in PF sets) 

 

4.3. Example 3: A 5-bay and 10-story plane frame 
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example. The frame structure model is made up of 110 two-dimensional beams. The 

material density is 2500 kg/m3 and the modulus of elasticity is 250 GPa. The sections of 

columns and beams from the first to the fifth floors are considered BOX 35×35×1 and 

IPB300, respectively. The sections of columns and beams from the sixth to the tenth floors 

are considered BOX30×30×1 and IPB280, respectively. 

 

 
(a) 

 
(b) 

Figure 8. The obtained health severities of MO algorithms for the second example: a) scenario 1, 

b) scenario 2 
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damage in element 101 and 15% damage in element 107. In this example, the first 20 natural 

frequencies and all the nodal displacements in the mode shapes are used. 

 
Table 3. Results obtained by different MO algorithms for both damage scenarios in the third 

example 

 
Damage 

location 

Exact severity 

damage(%) 

Predicted severity damage(%) 

MOCBO MOPSO NSGA-II 

Scenario 1 108 15 13.463 20.770 0 

Scenario 2 
101 5 4.610 31.244 15.643 

107 15 13.493 0 0 

 

 

Figure 9. A 5-bay and 10-story frame with the finite-element model 

The trade-off’s curves and best solutions obtained in this example using three provided 

multi-objective optimization algorithms are shown in Figure 10. It is clear that the PF set 
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from MOCBO is dominated by the ones from MOPSO and NSGA-II. Table 3 displays the 

best solutions found in this example using MO algorithms. Figure 11 shows the predicted 

health severities (1- α) in the elements using the proposed MO algorithms. The most precise 

estimates of how much damage will be done to various elements by MO algorithms are also 

presented in Figure 11. Similar to the first and second examples, one can see that MOCBO 

predicts the damage severity better than NSGA-II and MOPSO. 

 

 
(a) 

 
(b) 

Figure 10. The obtained Pareto Front of MO algorithms for the third example: a) scenario 1, 

b) scenario 2 (Stars represent the best solutions in PF sets) 
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(a) 

 
(b) 

Figure 11. The obtained health severities of MO algorithms for the third example: a) scenario 1, 

b) scenario 2 
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location and qualification of damage severity of structural elements based on modal 

information of the damaged structures. Then, the MO algorithms are used to determine the 

damage in structures by optimizing the cost functions. 

The efficiency of the proposed algorithms is investigated with three simple frame 

structures. The performances of these examples are compared using noise-free modal data 

through simulated damage scenarios. Two damage scenarios, namely single scenario and 

multiple damage scenario, are considered for comparative study in each examples. The 

obtained results from the numerical studies indicate that the MO algorithms are viable to the 

problem of damage detection in frame structures.  
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