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ABSTRACT 
 

The contourlet transform as an extension of the wavelet transform in two dimensions uses the 

multiscale and directional filter banks, and has a more adequate performance in comparison with 

the classical multi-scale representations. In this study, the efficiency of the contourlet transform 

is assessed for identifying the damage of plate structures in various conditions. The conditions 

include single damage and multi–damages with different shapes and severities, the different 

supports (i.e., boundary conditions), and the higher mode shapes,. For achieving this purpose, 

the process of the damage detection of plate structures using contourlet transform is 

implemented in the three steps. In the first step, the first mode shapes of a damaged plate and a 

reference state as the intact plate are obtained using the finite element method. In the second 

step, the damage indices are achieved by applying the contourlet transform to the responses of 

the first mode shapes for the damaged and intact plates. Finally, the location and the approximate 

shape of the damage are identified by plotting the damage indices. The obtained results indicate 

that the various conditions influence the performance of the contourlet transform for identifying 

the location and approximate shape of damages in plate structures. 
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1. INTRODUCTION 
 

The damage detection and the structural health monitoring of structural and mechanical 

systems have considerably attracted the attention of researchers over the last years [1–7]. 

Since the occurrence of damage alters the performance of structures, the application of the 
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methods for the damage detection is important. As a consequence, the existence of damage 

in structures can change their static and dynamic responses. Accordingly, various non–

destructive damage identification schemes have been proposed and developed. These 

methods have the merit of preserving the integrity and safety of a structure. The proposed 

methods can be categorized into global and local strategies. Some of these methods are 

based on the modal responses which include natural frequencies, mode shapes and damping 

ratios. Many studies have revealed that mode shapes and corresponding mode shape 

curvatures could be considered as the best responses of structures in the damage detection 

procedure [9–20]. Furthermore, most of the damage detection techniques have relied on 

baseline information to identify the location and severity of the damage. However, some 

techniques don’t require such information and have more flexibility in engineering 

applications [14]. In some studies [21, 22], two–step approaches based on the modal strain 

energy method and an optimization method were developed for the damage detection of 

structures. The application of optimization methods were also adopted and developed as 

effective tools in the damage detection of structures [23–31].  

For many years, the wavelet transform–based methods have been successfully applied as 

a promising mathematical tool in order to detect the damage in structures [32–34]. In these 

methods, the structural responses are converted into signals. Then, the damage identification 

can be performed using the wavelet coefficients. Various studies have used wavelet 

transforms in the damage detection of two–dimensional structures such as plate structures. 

In the following, these studies are reviewed briefly. Fan and Qiao [35] developed a method 

that could identify the damage in plate structures using the Dergauss2 wavelet. By 

performing wavelet analysis, Douka et al. [36] suggested a method for the crack 

identification in plate structures. In this scheme, the continuous wavelet transform employed 

the vibration modes of plate and estimated the location and depth of cracks. A method based 

on the continuous wavelet transform was introduced by Rucka and Wilde [37] in order to 

find the location of damages in beam and plate structures. In this study, the location of the 

damage was revealed by the peaks of the spatial variation of the transformed responses. 

Huang et al. [38] monitored the structural degradation by using a two–dimensional 

continuous wavelet transform and assessing the spatially continuous variation of the 

structural response parameters. Xiang and Liang [39] developed a technique for detecting 

multiple damages in thin plates. This technique consisted of two steps: 1) identifying the 

damage location; 2) the estimation of the damage severity. In the work of Fan and Qiao [40], 

a damage identification method was developed using a damage location factor matrix and a 

damage severity correction factor matrix for the localization and quantification of damage in 

plate–type structures. The proposed method consisted of three steps: sensitive mode 

selection, damage localization, and damage quantification. Hajizadeh et al. [41] investigated 

the influence of the static and dynamic responses of plate structures in the damage detection 

process based on the 2–D discrete wavelet. The results of this study have been demonstrated 

using both of the static and dynamic responses in the damage detection of plate structures. 

The existence of noise has an important effect on the success of a process in identifying 

damage based on wavelet transforms. Hence, the performance of wavelet transforms for the 

identification of damage location under the presence of noise was discussed by some of 

researchers [42, 43].  

The damage detection techniques were also developed based on the curvelet and 

https://www.sciencedirect.com/topics/engineering/localisation
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contourlet transforms. Bagheri et al. [44] presented a new method based on the curvelet 

transform for identifying the location of damage in plate structures. The results of this study 

demonstrated that the curvelet transform successfully detected the linear damage in plate 

structures. Hajizadeh et al. [45] also evaluated the performance of the wavelet and curvelet 

transforms based–damage detection of various types of damage in plate structures. The 

results revealed that the wavelet and curvelet transforms could accurately identify the 

existence, location of the damage in plate structures. Vafai and Salajegheh [46] presented 

the damage detection of plate structures using the contourlet transform. The results of this 

study demonstrated that contourlet transform could be utilized as an accessible and useful 

technique for the damage detection of pate structures. Jahangir et al. [47] used the contourlet 

transform for the damage localization and severity assessment of prestressed concrete slabs. 

Jahangir et al. [48] also presented the damage detection of prestressed concrete slabs using 

the wavelet analysis of vibration responses in the time domain. In other study implemented 

by Vafai and Salajegheh [49], a new damage detection based on the shearlet transform as 

presented for identifying the damage in plate and was compared with the wavelet, Laplacian 

pyramid, curvelet, and contourlet transforms.  

None of the reviewed studies has been investigated the efficiency of the contourlet 

transform for the damage detection of plate structures in various conditions. The various 

conditions include single damage and multi–damages with different shapes and severities, the 

different supports (i.e., boundary conditions) of structures, and the higher mode shapes of 

structure. While, the conditions influence the ability of the contourlet transform for the 

damage detection of plate structures. Hence, this study presents the effect of these conditions 

on the performance of the contourlet transform for the damage detection of plate structures. 

For this purpose, the first mode shapes of a damaged plate and a reference state as intact 

plate are first obtained using the finite element method (FEM). In the second step, the 

coefficients of the contourlet transform are calculated by applying the contourlet transform 

to the first mode shapes. Finally, the location and approximate shape of the damage are 

assessed using the difference of the contourlet transform coefficients between intact and 

damaged structure. 

 

 

2. OVERWIEW OF CONTOURLET TRANSFORM APPROACH 
 

2.1 Laplacian pyramid 

To achieve a multi–scale decomposition, the Laplacian pyramid (LP) proposed by Burt and 

Adelson [50] is used. The LP decomposition is shown in Fig. 1. Obviously, it is similar to 

that of the wavelets.  

 

 
Fig. 1 Construction of Laplacian pyramid [50] 

 

Clearly, the input image S is the firstly lowpass filtered by filter FH. Then, it is 

downsampled to produce a coarse approximation a. Furthermore, it is interpolated and 

http://www.jsoftcivil.com/article_133422.html
http://www.jsoftcivil.com/article_133422.html
https://journals.semnan.ac.ir/article_5666.html
https://journals.semnan.ac.ir/article_5666.html
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passed through the synthesis filter FG. At the next stage, the achieved image is subtracted 

from the original image S. By this way, the bandpass image b is obtained. This process is 

successively repeated on the coarser version of the image a. In this process, it is assumed 

that the LP utilizes two orthogonal filters and down sampling in each direction (i.e. 

M=diag(2,2) in Fig. 1). According to the certain regularity conditions, a unique scaling 

function 2 2, ( ) ( ),t L R  is defined by the lowpass synthesis filter FG. This function satisfies the 

following two scale equations [50, 51]: 
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in which scale, location and time are shown by indices j, n and t, respectively. Z denotes 

integer number. Also,[ ]  represents a matrix with discrete elements. 

It should be reminded that the family ,{ }j n forms an orthogonal basis for an 

approximation subspace at the scale 2j. The LP can be considered as an oversampled filter 

bank. This bank includes poly phase components of the various image b[n] shown in Fig. 1 

in companion with the coarse image a[n]. These components belong to different filter bank 

channels which have the same sampling matrix diag(2,2). The synthesis filter of the 

aforementioned poly phase components is denoted by iF where 0 3. i These filters are the 

high pass ones. In an analogous manner to wavelets, a continuous function, ( ) ( ),i t  is 

considered for each of these filters. The functions have the subsequent shapes [51]: 
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Inserting ( ) ( )i t  into Eq. (3) leads to the next result: 
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In this way, the family ( )

,{ }i

j n forms a tight frame for the subspace at the scale 2j. It 

should be noted that  if n  represents the discrete signal passed through the filter Fi. 

 

2.2 Directional decomposition 

The 2–directional filter bank (DFB) is employed for linking the edge points into linear 

structures, which modulate the input image and use quincunx filter banks with diamond–
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shaped filters [51]. By utilizing a  l–level tree-structured decomposition, the DFB can be 

efficiently implemented. In this way, 2l  sub-bands are obtained with a wedge-shaped 

frequency partition. Fig. 2 illustrates these sub-bands. It is seen from Fig. 2 that a bank of 

filters splits the 2–D frequency plane ( ) into the sub-bands. Moreover, a l–level DFB can 

generate a local directional basis for discrete signal in 22 ( )L Z which is composed of the 

impulse responses of the 2l directional filters and their shifts. They can be represented as 

[51]: 
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where m is location and it is equal to .n M  

 

 
Fig. 2 Directional filter bank frequency partitioning where l=3 and there are 23=8 real wedge–

shaped frequency bands [51] 
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According to Do and Vetterli [51], a frame
( )

, ,{ ( )}jl

j k n x  with a redundancy ratio equal to 

4/3 can span each subspace as follows: 
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Hence, the coefficients of the contourlet transform can be achieved by applying the 

equations introduced in the next Section. 



A.R. Hajizadeh, M. Khatibinia, and D. Hamidian 

 

428 

2.3 Contourlet transform 

Do and Vetterli [51] proposed the contourlet transform as a two–dimensional (2–D) image 

representation method. This transform has been constructed based on non–separable filter 

banks and provided an efficient directional multi–resolution image representation. The 

contourlet transform approach utilizes a double filter bank technique in the discrete domain. 

The structure of the contourlet transform is depicted in Fig. 3.  

 

 
Fig. 3 A flow graph of the contourlet transform [34] 

 

The image is first decomposed into sub bands by the Laplacian pyramid and then each 

detailed image is analyzed by the directional filter banks. As can be seen from Fig. 3, the 

transform includes two steps. Firstly, the sub-band decomposition is carried out; and at the 

second stage, the directional transform is implemented [51]. At first stage of the contourlet 

transform, the LP approach is used for capturing point discontinuities. Then, the DFB 

approach is implemented to link them in order to constructing linear structures. The 

contourlet transform has the merits of multi-resolution, localization, directionality, critical 

sampling and anisotropy. As a result, this transform can efficiently represent edges and other 

singularities along curves, in contrast to wavelet transform. In Fig. 4, the frequency partition 

of the contourlet transform is presented. According to Fig. 4, the 8-direction decomposition 

is used in the finest scale. Moreover, sub-bands 1–4 correspond to the most horizontal 

directions, while sub-bands 5–8 correspond to the most vertical ones.  

 

 
Fig. 4 Frequency partition of the contourlet transform [51] 
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It is assumed that an input image ( , )f x y is decomposed into bandpass images by using 

the contourlet transform of J level LP and lj directions at each scale. Thus, the whole 

decomposition can be represented as follows [51]: 
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where aJ and ( )
,
l

j kd are approximate and detail coefficients, respectively, and are given by: 
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where is an inner product.  

 

 

3. FINITE ELEMENT MODEL OF DAMAGE DETECTION 
 

By monitoring the structural dynamic responses such as mode shapes, the existence of 

damage can be identified in plate structures. As previously mentioned, the mode shapes of 

damaged and intact plates are required in the damage detection procedure. To achieve this 

purpose, the free vibration analysis of plate structure is  carried out  using the finite element 

method (FEM).  This work deals with the damage detection of  rectangular plates. After the 

occurrence of damage, it is assumed that the plate is cracked. In Fig. 5, a rectangular plate 

with one damage (or crack) is schematically depicted. The thickness, length and width of 

the plate are shown by t, L and B, respectively. Furthermore, it is assumed that the damage 

occurred in the plate is a linear damage. Its length and width are W and D. Its location is 

specified by L1 and B1. Also, is the angle of the crack with the horizontal edge. 

In this study, the damage is modeled as a reduction in Young’s modulus of elements. 

Young’s modulus of a damaged element is defined as: 

 

                                                               (1 )dE E d= −                                                          (12) 

 

where Ed and E are the Young’s modulus of the damaged and undamaged elements, 

respectively; and d indicates the damage severity. This method of modeling damage was 

utilized for plate structures by other researchers [7, 44–46].  

Based on the Hamilton principle [52], the equation of dynamic equilibrium for the 

Mindlin plate is expressed as: 

 

                                                         ( ) ( ) ( )t t t+ =M u K u f                                               (13) 
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in which f, M and K are the force vector and mass and stiffness matrices, respectively. 

Furthermore, u and u are the acceleration and displacement functions, respectively. 

 

 
Fig. 5 Geometry of a plate structure with linear damage 

 

If a harmonic motion is assumed, the natural frequencies and modes of plate vibration 

can be obtained in the framework of Eigen–problem. This problem is defined as follows: 

 

                                                     
2( ) , 1,2, ,i i mi n− = =K M φ 0                           (14) 

 

where ωi is the natural frequency of the ith mode; and φi
is the ith mode shape vector of 

vibration. nm is the number of structural modes. In this study, the first mode shape (i.e. 1)φ is 

utilized in the damage detection process. 

 
 

4. CONTOURLET TRANSFORM FOR DAMAGE DETECTION 
 

In this study, the contourlet transform using the first mode shape of plate structures is 

presented for identifying the existence of the damage which produces small discontinuities 

in the structural responses at the damaged locations. These discontinuities cannot be 

observed by comparing the responses of damaged plate with those of intact plates. It is 

worth pointing out that the contourlet coefficients can detect the discontinuities, which are 

obtained based on the difference of the first mode shape between the intact and damaged 

plate structures. The following steps of the proposed method are implemented in order to 

detect the damage in a rectangular plate: 

1. At the first stage, the first mode shapes of a damaged and intact plate structure are 

determined by performing the modal analysis. To achieve this purpose, the finite 

element analysis of intact and damaged plate structure is coded in MATLAB software 

[53].  
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2. The contourlet transform is applied to the first mode shapes of the intact and damaged 

plate structures which are considered as an image. In this step, first, each mode shape is 

decomposed into sub–bands by LP transform, and details are obtained. Afterward, the 

details of each mode shape are analyzed by DFB. Eventually, the coefficients of the 

contourlet transform expressed in Eqs. (10) and (11) are chosen for the mode shapes. 

3. The damage index is calculated based on the difference of the coefficients for each 

element node of damaged and intact plates. The damage index of the ith node, DIi, is 

defined as follows [45]: 

 

                                                                   = −d u

i iDIi C C                                                    (15) 

 

where d

iC and u

iC are the approximate or detail coefficients of the contourlet transform for ith 

node in damaged and intact plates. The coefficients are calculated based on Eqs. (10) and 

(11). 

4.  In the final step, the damage is detected by plotting the damage index in all of the 

nodes of plate elements. 

It is noted that the coefficients of the first level of the contourlet transform are used in 

this study. Hence, the dimensions of studied plate structures are half in the damage detection 

procedure. The issue (so-called as the decomposition procedure of each level) were 

completely expressed in Hajizadeh et al. [45] 

  

 

5. NUMERICAL SIMULATIONS 
 

In this section, the performance of the contourlet transform is assessed for the damage 

detection for plate structures with several examples and the effective conditions.  

 

5.1 Case1: a linear damage 

A rectangular plate with  the length 250 cm,L = the width 250 cmB = and the thickness

5cmt = is considered as the first example.  The  material properties of the plate include 

Young’s modulus of 6 22.1 10 kg/cm ,E =  mass density of 30.00785kg/cm ,= and Poisson’s 

ratio of 0.33.=v  In this example, it is assumed that a linear damage with the length of

20cm,W = the width of 3cmD = , 1 90 = is occurred in the plate and the location coordinates 

of the damage are 1 105cmL = and 1 125cm.B = The damage severity, d, is also equal to10%.  A 

comparison between the first mode shapes of damaged and intact plate is depicted in Fig. 6.  

Since no difference is observed between the first mode shape of the damaged plate and 

the intact plate, it is quite difficult to reveal the difference. Hence, the contourlet transform is 

applied to the first mode shape of the intact and damaged plate structures and the damage 

index defined in Eq. (22) are calculated. The plot of the damage index is shown in Figs. 7 

and 8. As revealed from Figs. 7 and 8, the peak values of the damage index are obviously 

created at the position of the damage. Hence, the contourlet transform can detect the location 

of damage. It is noted that the approximation coefficients and detail coefficients of the 

contourlet transform are calculated based on Eqs. (10) and (11), respectively.  
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Fig. 6 First mode shape for the plate: (a) without damage (b) with damage 

 

 
Fig. 7 Damage index based on the approximation coefficients of the contourlet transform 

 

 
Fig. 8 Damage index based on the detail coefficients of the contourlet transform 
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Fig. 9 also shows the values of the damage index which are obtained based on the 2-D 

vertically added detail coefficients of the contourlet transform. It can be seen from Fig. 9 

that the contourlet transform can identify the location of the damage. It is noted that this 

example was considered by Hajizadeh et al. [45] and the damage detection process was 

implemented using the 2-D discrete wavelet transform. For the comparison of the contourlet 

transform with the 2-D discrete wavelet transform, the damage quantification results 

obtained based on the 2-D discrete wavelet transform are depicted in Fig. 10. This figure is 

related to the damage index determined from the 3-D of the detail coefficients of the wavelet 

transform. By the comparison of the results shown in Figs. 8 and 10, it is revealed that the 

performance of the contourlet transform is similar to that of the 2-D discrete wavelet 

transform.  

 

 
Fig. 9 Damage index based on the 2–D detail coefficients of the contourlet transform 

 

 
Fig. 10 Damage index for the detail coefficients of the wavelet transform [45] 
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5.2 Case 2: an oblique linear damage 

In this example, a fixed–supported rectangular plate with the length 600 cm,L =  the width

600 cm,B =  and the thickness 2cmt =  is presented. Bagheri et al. [44] investigated the 

damage detection of this plate using the curvelet transform. The material properties of the 

plate include Young’s modulus of 6 22.1 10 kg/cm ,E =  mass density of 30.0025kg/cm = and 

Poisson’s ratio of 0.2.=v  It is assumed that the damage of plate induced in the plate 

structure with the length of 19cm,W = the width of 1cmD = and 45 = and the started 

location coordinates of the damage are 1 406cmL = and 1 445cm.B =  The damage was 

represented using the elements with reduced thickness. Hence, the damage severity, d, is 

assumed to be 20%.
 
In order to identify the damage in this plate, the contourlet transform is 

applied to the difference between the intact and damaged plate structures. The results of the 

damage detection are depicted in Figs. 11 and 12 by determining the details and 

approximation coefficients of the contourlet transform. Results are related to the damage 

index of the detail and approximation coefficients of the contourlet transform.  

 

 
(a) 2–D 

 
(b) 3–D 

Fig. 11 Damage index for the 2–D and 3–D detail coefficients of the contourlet transform 

 
(a) 2–D 

 
(b) 3–D 

Fig. 12 Damage index for the 2–D and 3–D approximation coefficients of the contourlet 

transform 
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It can be seen from Figs. 11 and 12 that this linear damage in the plate structure is 

detected and localized using the contourlet transform. Based on Figs. 11 and 12, it can be 

concluded that the contourlet transform can identify the approximate shape of the damage. 

Furthermore, as observed from Figs. 11 and 12, the peak values of the damage index are 

occurred at the location of the damage. Based on the comparison of this study with that 

presented by Bagheri et al. [44], it can be concluded that the results of the contourlet 

transform are similar to those of the curvelet transform. The results also demonstrate that the 

contourlet transform can identify the approximate shape of the damage.  

 

5.3 Case 3: a curved damage 

For the third case, a fixed–supported rectangular plate with dimensions
500cm, 500cm, 1cmL B t= = = is considered and shown in Fig. 13. The material properties of 

the plate are assumed to be Young’s modulus of 6 22.1 10 kg/cm ,E =  mass density of 
30.00785kg/cm = and Poisson’s ratio of 0.3.=v In this example, a curved damage with the 

with a radius of 70cmR = is a part of a circle and the started location coordinates of the 

damage are 1 214.7 cmL = and 1 250cm.B =  The different severities of damage including 10%, 

5% and 2% are considered as the reduce of Young’s modulus in order to investigate the 

effectiveness of the contourlet transform for different severities of damage. 

The results for the different severities of the damage in the plate are shown in Figs. 14 to 

16. As it can be seen from Figs. 14 to 16, the contour transform can identify the damage 

which has the severity higher than 5%. The results also demonstrate the efficiency and 

applicability of the contour transform in the detection of the location and approximate shape 

of the damage. Therefore, the severity of the damage influences the performance of the 

contour transform. 

 

 
(a) 2–D 

 
(b) 3–D 

Fig. 14 The damage index for 10 percent damage 
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(a) 2–D 

 
(b) 3–D 

Fig. 15 The damage index for 5 percent damage 

 

 
(a) 2–D 

 
(b) 3–D 

Fig. 16 The damage index for 2 percent damage 

 

5.4. Case 4: three damages 

The rectangular plate with the properties described in section 5.3 is considered in this 

example. In order to investigate the capability of the contour transform in the detection 

process of plate structures with multi damages, it is assumed that three damages are occurred 

in the plate and shown in Fig. 17. The damages consist of a liner damage with the length of 

30cm,W = the width of 3cm,D = a square damage with the length of 15cm,W =  the width of 

15cmD =  and a curved damage with a radius of 40cm,R =
 the width of 3cm.D =  The location 

coordinates of the liner, square and curved damages are 1 80cmL = and 1 80cm,B = 2 115cmL =

and 2 115cm,B = and 3 205.8cmL = and 3 73.3cm,B = respectively. 

In the first scenario, the severity of all damages is assumed to be 20%. The results of the 

damage detection using are shown in Fig. 18. As seen from Fig. 18, the peak values of the 

damage index obtained based on the detail coefficients are created in the location of the 

damages. Thus, it can be concluded that the contourlet transform efficiently identifies the 

location of multi–damages with the equal severity induced in the plate structures.  
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Fig. 17 Geometry of the plate structure with the three damage (unit: cm) 

 

 
Fig. 18 The damage index for the detail coefficients of the contourlet transform 

 

In the second scenario, the severity of the liner, square and curved damages are assumed 

to be equal 7%, 13% and 20%, respectively. The results of the damage identification are 

depicted in Fig. 19. It can be observed from Fig. 19 that the peak values of the damage index 

for the detailed coefficients are created in the location of the damages. However, the high 

damage indices corresponding to the damages with high severity influence the detection of 

the damage with low severity. Hence, the damage with low severity may not be identified 

clearly. 
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Fig. 19 The damage index for the detail coefficients of the contourlet transform 

 

5.5. Case 5: different boundary conditions 

In order to assess the effect of boundary conditions, a rectangular plate with the length
400 cm,L =  the width 400 cmB = and the thickness 5cmt = is selected in this example and is 

shown in Fig. It is assumed that a damage with 30 30 cm is occurred in the distance of 70 

cm from the left corner of the plate as shown in Fig. 20. The damage severity is also 

assumed to be 15% reduction in elasticity modulus. For the effect of boundary conditions in 

the damage detection of plate structures, the different boundary conditions are selected in 

modeling the finite element of the plate. 
 

 
Fig. 20 Geometry of the plate structure with an area of 30 30cm as damage (unit: cm) 
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For this purpose, four cases of the boundary conditions are selected for the damage 

detection of the rectangular plate and consist of: 1) four fixed supports, 2) four pin supports, 

3) a fixed support in the left edge of plate, 4) a support in the right edge of plate. It is noted 

that in the three and four cases other edges of the plate are free. Figs. 21 to 23 show the 

obtained results of the contourlet transform for the damage assessment of the cases (2) to (4) 

in the plate. For the case (1), the numerical results are reported in Fig. 11. It is observed that 

the contour transform can accurately find the location of the damage in the cases (1) and (2). 

In the case (3), the location of the damage with satisfactory precision is identified, but the 

contourlet transform cannot reveal the actual damage in the case (4) 
 

 
(a) 3–D 

 
(b) 2–D 

Fig. 21 The results of the damage detection for case (2) 

 

 

 
(a) 3–D 

 
(b) 2–D 

Fig. 22 The results of the damage detection for case (3) 
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(a) 3–D 

 
(b) 2–D 

Fig. 23 The results of the damage detection for case (4) 

 

5.6. Case 6: effect of higher–order mode shapes 

In this example, the effectiveness and performance of the contourlet transform are also 

investigated by using the higher–order mode shapes. For this purpose, the plate with an 

oblique linear damage presented in section 5.2 is considered. The results of the damage 

detection for the second to fifth mode shapes are shown in Fig. 24. 

It is seen from Fig. 24 that the location of the damage cannot be identified by using the 

higher mode shapes. In fact, since the peak of the detail coefficients of the contourlet 

transform is occurred at the change of the curvature location, the location of damage cannot 

be detected by the contourlet transform. In other words, the change in the curvature of the 

higher mode shapes causes a jump in the contourlet transform coefficient and the 

contradiction in the detection of the damage. 

 

 

 
(a) The second mode shape 

 
(b) The third mode shape 
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(c) The fourth mode shape 

 
(d) The fifth mode shape 

Fig. 24 The damage index based on the detail coefficients of the contourlet transform for the 

second to fifth mode shapes 

 

 

6. CONCLUSIONS 
 

In this study, the assessment of the contourlet transform with the effective conditions was 

investigated in order to identify the location of damages in plate structures using the first 

mode shapes corresponding to the damaged and intact structures. To achieve this purpose, 

the contourlet transform was used to identify the difference between the obtained mode 

shapes of a damaged plate and a reference state as the intact plate. The damage detection 

process was also implemented without regard to noise. The observation of the results 

indicates that the contourlet transform can detect the existence, location and approximate 

shape of one or multi-damages in plate structures. Furthermore, the following results can be 

drawn from this study: 

• Due to the displacements of a plate structure in the first mode shape, the single 

damage with different shapes can be detected by the contourlet transform. 

• In plate structures with single damage and multi–damages, the location of the 

damage with the severity more than 5% can be identified very well.  

• If the difference of the percentage severities in plate structure with multi–damages is 

high, the damage detection with the smaller percentage severity is influenced by the 

damages with the larger percentage severity, and its location cannot be identified. 

• The numerical results reveal that the boundary conditions are the important factors in 

the damage identification using the contourlet transform. 

• Due to the displacements of a plate structure in the first mode shape, this mode shape 

can be considered as the best response of plate structure in the damage detection 

procedure. 

• The change in the curvature of the higher mode shapes causes a jump in the 

contourlet transform coefficient and the contradiction in the detection of the damage. 

Hence, the higher mode shapes can’t be used in the damage detection using the 

contourlet transform. 



A.R. Hajizadeh, M. Khatibinia, and D. Hamidian 

 

442 

REFERENCES 
 

1. Naseralavi SS, Salajegheh J, Fadaee MJ. Detection of damage in cyclic structures using 

an eigenpair sensitivity matrix, Comput Struct 2012; 110: 43–59. 

2. He YW, Zhu S. Progressive damage detection based on multi–scale wavelet finite 

element model: numerical study, Comput Struct 2013; 125: 177–86. 

3. Naseralavi SS, Salajegheh E, Fadaee MJ, Salajegheh J. A novel sensitivity–based 

method for damage detection of structures under unknown periodic excitations, J Sound 

Vib 2014; 333: 2776–803. 

4. Ghiasi R, Ghasemi MR. Optimization–based method for structural damage detection 

with consideration of uncertainties: a comparative study, Smart Struct Syst 2018; 22(5): 

561–74. 

5. Arefi Sh, Gholizad A, Seyedpoor SM. A modified index for damage detection of 

structures using improved reduction system method, Smart Struct Syst 2020; 25(1): 1–

22. 

6. Mohammadizadeh MR, Jahanfekr E, Shojaee S. Damage detection in thin plates using a 

gradient–based second–order numerical optimization technique, Int J Optim Civil Eng 

2020; 4(10): 571–94. 

7. Hajizadeh AR, Khatibinia, Fundamental mode shape–based damage detection in 

arbitrary shaped plates using a hybrid of contourlet transform and Delaunay 

triangulation, Structures 2023; 58: 105631. 

8. Mahdavi VR, Kaveh A. Structural damage identification based on change in neutral 

frequencies using three multi–objective metaheuristic algorithms, Int J Optim Civil Eng 

2024; 14(3): 337–54. 

9. Kaveh A, Javadi SM, Maniat M. Damage assessment via modal data with a mixed 

particle swarm strategy, ray optimizer, and harmony search, Asian J Civ Eng 2014, 

15(1): 95–106. 

10. Kaveh A, Maniat M. Damage detection in skeletal structures based on charged system 

search optimization using incomplete modal data, Int J Civ Eng  2014, 12(2): 291–98. 

11. Hamad WI, Owen JS, Hussein MFM. Modeling the degradation of vibration 

characteristics of reinforced concrete beams due to flexural damage, Struct Control 

Health 2015; 22(6): 939–67. 

12. Hsu TY, Liao WI, Shiao SY. A pseudo local flexibility method for damage detection in 

hyperstatic beams, Struct Control Health 2015; 22(4): 682–93. 

13. Kaveh A, Zolghadr A. An improved CSS for damage detection of truss structures using 

changes in natural frequencies, Adv Eng Softw 2015, 80: 93–100. 

14.  Alves V, Cury A, Roitman N, Magluta C, Cremona C. Novelty detection for SHM 

using raw acceleration measurements, Struct Control Health 2015; 22(9): 1193–1207. 

15. Kaveh A, Maniat M Damage detection based on MCSS and PSO using modal data, 

Smart Struct Syst 2015; 15(5), 1253–70. 

16.  Dworakowski Z, Kohut P, Gallina A, Holak K, Uhl T. Vision–based algorithms for 

damage detection and localization in structural health monitoring, Struct Control Health 

2016; 23(1): 35–50. 

http://www.sciencedirect.com/science/article/pii/S0022460X14001308
http://www.sciencedirect.com/science/article/pii/S0022460X14001308
https://scholar.google.com/scholar?cluster=11813598559304587555&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=11813598559304587555&hl=en&oi=scholarr
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3xLPWbYAAAAJ&sortby=pubdate&citation_for_view=3xLPWbYAAAAJ:abG-DnoFyZgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3xLPWbYAAAAJ&sortby=pubdate&citation_for_view=3xLPWbYAAAAJ:abG-DnoFyZgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3xLPWbYAAAAJ&sortby=pubdate&citation_for_view=3xLPWbYAAAAJ:abG-DnoFyZgC


PERFORMANCE ASSESSMENT OF CONTOURLET TRANSFORM IN DAMAGE ... 

 

443 

17. Kaveh A, Hoseini Vaez SR, Hosseini P, Fallah N. Detection of damage in truss 

structures using Simplified Dolphin Echolocation algorithm based on modal data, 

Smart Struct Syst 2016, 5(18): 983–1004. 

18. Ooijevaar TH, Warnet LL, Loendersloot R, Akkerman R, Tinga T. Impact damage 

identification in composite skin–stiffener structures based on modal curvatures, Struct 

Control Health 2016; 23(2): 198–217. 

19. Kaveh A, Rahmani P, Dadras A. Guided water strider algorithm for structural damage 

detection using incomplete modal data, J Sci Technol Trans Civ Eng 2021; 46: 771–88. 

20. Rucevskis S, Janeliukstis R, Akishin P, Chate A. Mode shape–based damage detection 

in plate structure without baseline data, Struct Control Health 2016, 23: 1180–93. 

21. Kaveh A,  Zolghadr A. Cyclical parthenogenesis algorithm for guided modal strain 

energy based structural damage detection; Appl Soft Comput 2017, 57: 250–64. 

22. Kaveh A, Zolghadr A. A guided modal strain energy based approach for structural 

damage identification using Tug of War Optimization algorithm, J Comput Civ Eng 

ASCE 2017,  31(4): 04017016.  

23. Kaveh A, Zolghadr A, An improved charged system search for structural damage 

identification in beams and frames using changes in natural frequencies, Int J Civ Eng 

2012; 2(3): 321–40. 

24. Kaveh A, Mahdavi VR. Damage identification of truss structures using CBO and ECBO 

algorithms, Asian J Civ Eng 2016, 1(17): 75–89. 

25. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering, 

Springer, Switzerland, 2017. 

26. Kaveh A, Dadras A. Structural damage identification using enhanced thermal exchange 

optimization algorithm, Eng Optimiz 2018, 50(3): 430–451.  

27. Kaveh A, Rahmani P, Dadras EA. A multi-stage damage detection approach using 

graph theory and water strider algorithm, J Sci Technol Trans Civ Eng 2021, 46: 33–54  

28. Kaveh A, Hoseini Vaez SR, Hosseini P. Enhanced vibrating particle system algorithm 

for damage identification of truss structure, Sci Iran 2019, 1(26): 246–56. 

29. Kaveh A, Hoseini Vaez SR, Hosseini P.  A new two-phase method for damage detection 

in skeletal structures, J Sci Technol Trans Civ Eng 2019, 43: 49–65. 

30. Kaveh A, Hosseini SM, Zaerreza A. Boundary strategy for optimization–based 

structural damage detection problem using metaheuristic algorithms, Period Polytech 

Civ Eng 2021, 65(1): 150–67.  

31. Kaveh A, Hosseini SM, Akbari H. Efficiency of plasma generation optimization for 

structural damage identification of skeletal structures based on a hybrid cost function, J 

Sci Technol Trans Civ Eng 2021, 45: 2069–90. 

32. Nagarajaiah S, Basu B. Output only modal identification and structural damage 

detection using time frequency & wavelet techniques, Earthq Eng Eng Vib 2009; 8(4): 

583–605. 

33. Basu B, Nagarajaiah S, Chakraborty A. Online identification of linear time–varying 

stiffness of structural systems by wavelet analysis, Struct Health Monit 2008; 7(1): 21–

36. 

34. Cao MS, Qiao PZ. Integrated wavelet transform and its application to vibration mode 

shapes for damage detection of beam–type structures, Smart Mater Struct 2008; 17(5): 

055014. 

http://ascelibrary.org/toc/jccee5/31/4


A.R. Hajizadeh, M. Khatibinia, and D. Hamidian 

 

444 

35. Fan W, Qiao P. A 2–D continuous wavelet transform of mode shape data for damage 

detection of plate structures, Int J Solids Struct 2009; 46: 4379–95. 

36. Douka E, Loutridis S, Trochidis A. Crack identification in plates using wavelet analysis, 

J Sound Vib 2004; 270: 279–95. 

37. Rucka M, Wilde K. Application of continuous wavelet transform in vibration based 

damage detection method for beams and plates, J Sound Vib 2006; 297: 536–50. 

38. Huang Y, Meyer D, Nemat–Nasser S. Damage detection with spatially distributed 2D 

continuous wavelet transform, Mech Mater 2009; 41: 1096–107. 

39. Xiang J, Liang M. A two–step approach to multi–damage detection for plate structures, 

Eng Fract Mech 2012; 91: 73–86. 

40. Fan W, Qiao PZ. A strain energy–based damage severity correction factor method for 

damage identification in plate–type structures, Mech Syst Signal Pr 2012; 28: 660–78. 

41. Hajizadeh AR, Salajegheh E, Salajegheh J. 2–D Discrete wavelet–based crack detection 

using static and dynamic responses in plate structures. Asian J Civ Eng 2016; 17(6): 

713–35. 

42. Pakrashi V, Basu B, O’Connor A. Structural damage detection and calibration using a 

wavelet–kurtosis technique, Eng Struct 2007; 29(9): 2097–2108. 

43. Basu B. Identification of stiffness degradation in structures using wavelet analysis, 

Constr Build Mater 2005; 19(9): 713–21. 

44. Bagheri A, Ghodrati Amiri G, Seyedrazzaghi SA. Vibration–based damage 

identification of plate structures via curvelet transform, J Sound Vib 2009; 327: 593–

603. 

45. Hajizadeh AR, Salajegheh J, Salajegheh E. Performance evaluation of wavelet and 

curvelet transforms based–damage detection of crack types in plate structures, Struct 

Eng Mech 2016; 60(4): 667–91. 

46. Vafai S, Salajegheh E. Comparisons of wavelets and contourlets for vibration based 

damage identification in the plate structures, Adv Struct Eng 2019; 22(1): 

136943321882490. 

47. Jahangir H, Khatibinia M, Kavousi M. Application of contourlet transform in damage 

localization and severity assessment of prestressed concrete slabs, J Soft Comput Civ 

Eng 2021; 5(2): 39–67. 

48. Jahangir H, Khatibinia M, Mokhtari Masinaei M. Damage detection in prestressed 

concrete slabs using wavelet analysis of vibration responses in the time domain, 

J Rehabil Civ Eng 2022; 10(3): 37–63. 

49. Vafai S, Salajegheh E. A comparative study of shearlet, wavelet, laplacian pyramid, 

curvelet, and contourlet transform to defect detection, J Soft Comput Civ Eng 2023; 

7(2): 1–42. 

50. Burt PJ, Adelson EH. The laplacian pyramid as a compact image code, IEEE T Commun 

1983; 31(4): 532–40. 

51. Do MN, Vetterli M. The contourlet transform: an efficient directional multi resolution 

image representation, IEEE T Image Process 2005; 14: 2091–106. 

52. Hinton E. Numerical methods and software for dynamic analysis of plates and shells. 

Swansea, Pineridge Press 1988. 

53. The MathWorks, Inc. MATLAB the language of technical computing. 

<www.mathworks.com>, 2009. 

http://www.sciencedirect.com/science/journal/00137944/91/supp/C
http://www.jsoftcivil.com/article_133422_099a83bdd53119c94c56f5122bc58f17.pdf
http://www.jsoftcivil.com/article_133422_099a83bdd53119c94c56f5122bc58f17.pdf
https://journals.semnan.ac.ir/article_5666.html
https://journals.semnan.ac.ir/article_5666.html
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jRJnBzYAAAAJ&sortby=pubdate&citation_for_view=jRJnBzYAAAAJ:nrtMV_XWKgEC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jRJnBzYAAAAJ&sortby=pubdate&citation_for_view=jRJnBzYAAAAJ:nrtMV_XWKgEC
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83

	ABSTRACT
	1. Introduction
	2. overwiew of contourlet transform approach
	3. finite element model of damage detection
	4. contourlet transform for damage detection
	5. numerical simulations
	6. CONCLUSIONS
	References

