Search published articles


Showing 2 results for Fadavi Amiri

M. Fadavi Amiri, S. A. Soleimani Eyvari, H. Hasanpoor, M. Shamekhi Amiri,
Volume 8, Issue 1 (1-2018)
Abstract

For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil type, source mechanism, focal depth, etc.) well. In this paper, a new method for generating artificial earthquake accelerograms from the target earthquake spectrum is suggested based on the use of wavelet analysis and artificial neural networks. This procedure applies the learning capabilities of neural network to expand the knowledge of inverse mapping from the response spectrum to the earthquake accelerogram. At the first step, wavelet analysis is utilized to decompose earthquake accelerogram into several levels, which each of them covers a special range of frequencies. Then for every level, a neural network is trained to learn the relationship between the response spectrum and wavelet coefficients. Finally, the generated accelerogram using inverse discrete wavelet transform is obtained. In order to make earthquake signals compact in the proposed method, the multiplication sample of LPC (Linear predictor coefficients) is used. Some examples are presented to demonstrate the effectiveness of the proposed method.


M. . Fadavi Amiri, E. Rajabi, Gh. Ghodrati Amiri,
Volume 12, Issue 2 (4-2022)
Abstract

Depending on the tectonic activities, most buildings subject to multiple earthquakes, while a single design earthquake is suggested in most seismic design codes. Perhaps, the lack of easy assessment to second shock information and sometimes use of inappropriate methods in estimating these features cause successive earthquakes mainly were ignored in the analysis procedure. In order to overcome to above deficiencies, the learning abilities of artificial neural networks (ANNs) are used in two steps to evaluate the seismic capacity of steel frames consisting moment-resisting frames, ordinary concentrically, and buckling restrained brace (BRB) under critical consecutive earthquakes. For this purpose, peak ground acceleration of second shock (PGAa) is estimated based on the first shock features in the first step. Next, second ANNs estimate the decreased capacity of the damaged structure for LS and CP performance level according to the proposed PGAa from the previous step and some seismic and structural features. The results indicate that ANNs are trained to generalize the unseen information very well and reflect good precision in predicting target results in both steps. Finally, the effect of different parameters and repeated shocks is investigated on the seismic performance of mentioned frames. The results show the proper performance of BRB frames in the case of real and repeated earthquakes.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb