Search published articles


Showing 8 results for Hasançebi

O. Hasançebi, S. Çarbaş,
Volume 1, Issue 1 (3-2011)
Abstract

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with practical design considerations. Both examples are formulated according to provisions of ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution) specification. The results obtained are used to discuss the computational characteristics of ACO for optimum design of truss type structures.
S. Kazemzadeh Azad, O. Hasançebi, O. K. Erol,
Volume 1, Issue 3 (9-2011)
Abstract

Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers to utilize such techniques in their applications. Big- Bang Big-Crunch (BB-BC) algorithm is a simple metaheuristic optimization method emerged from the Big Bang and Big Crunch theories of the universe evolution. The present study is an attempt to evaluate the efficiency of this algorithm in solving engineering optimization problems. The performance of the algorithm is investigated through various benchmark examples that have different features. The obtained results reveal the efficiency and robustness of the BB-BC algorithm in finding promising solutions for engineering optimization problems.
O. Hasançebi, S. Kazemzadeh Azad,
Volume 2, Issue 4 (10-2012)
Abstract

Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependency on few parameters only are among the advantageous characteristics of the proposed SOPT algorithm. The efficiency of the developed algorithm is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.
O. Hasançebi, S. Kazemzadeh Azad, S. Kazemzadeh Azad,
Volume 3, Issue 2 (6-2013)
Abstract

The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm to optimum design of truss structures under stress and displacement constraints. The computational efficiency of the technique is improved through avoiding unnecessary analyses during the course of optimization using the so-called upper bound strategy (UBS). The efficiency of the UBS integrated SOPT algorithm is evaluated through benchmark sizing optimization problems of truss structures and the numerical results are reported. A comparison of the numerical results attained using the SOPT algorithm with those of modern metaheuristic techniques demonstrates that the employed algorithm is capable of locating promising designs with considerably less computational effort.
S. Kazemzadeh Azad, O. Hasançebi,
Volume 3, Issue 4 (10-2013)
Abstract

This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses involved in the course of design optimization. In the UBS, the key issue is to identify those candidate solutions which have no chance to improve the search during the optimum design process. After identifying those non-improving solutions, they are directly excluded from the structural analysis stage, diminishing the total computational cost. The performance of the UBS integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO outperforms the original PSO algorithm in terms of the computational efficiency.
S. Kazemzadeh Azad, O. Hasançebi , S. Kazemzadeh Azad,
Volume 4, Issue 2 (6-2014)
Abstract

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC-LRFD specifications. To this end an upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses in metaheuristic optimization algorithms, is used in conjunction with an exponential variant of the well-known big bang-big crunch optimization algorithm. The performance of the UBS integrated algorithm is investigated in the optimum design of two large-scale steel frame structures with 3860 and 11540 structural members. The obtained numerical results clearly reveal the usefulness of the employed technique in practical optimum design of large-scale structural systems even using regular computers.
S. Kazemzadeh Azad, S. Kazemzadeh Azad, O. Hasançebi,
Volume 6, Issue 3 (9-2016)
Abstract

The big bang-big crunch (BB-BC) algorithm is a popular metaheuristic optimization technique proposed based on one of the theories for the evolution of the universe. The algorithm utilizes a two-phase search mechanism: big-bang phase and big-crunch phase. In the big-bang phase the concept of energy dissipation is considered to produce disorder and randomness in the candidate population while in the big-crunch phase the randomly created solutions are shrunk into a single point in the design space. In recent years, numerous studies have been conducted on application of the BB-BC algorithm in solving structural design optimization instances. The objective of this review study is to identify and summarize the latest promising applications of the BB-BC algorithm in optimal structural design. Different variants of the algorithm as well as attempts to reduce the total computational effort of the technique in structural optimization problems are covered and discussed. Furthermore, an empirical comparison is performed between the runtimes of three different variants of the algorithm. It is worth mentioning that the scope of this review is limited to the main applications of the BB-BC algorithm and does not cover the entire literature.


S. Kazemzadeh Azad, S. Kazemzadeh Azad, O. Hasançebi,
Volume 6, Issue 4 (10-2016)
Abstract

Beginning  in  2011  an  international  academic  contest  named  as  International  Student Competition  in  Structural  Optimization  (ISCSO)  has  been  organized  by  the  authors  to encourage undergraduate and graduate students to solve structural engineering optimization problems. During the past events on the one hand a unique platform is provided for a fair comparison of structural optimization algorithms; and on the other hand it is attempted to draw  the  attention  of  students  to  the  interesting  and  joyful  aspects  of  dealing  with optimization problems. This year, after five online events successfully held  with support and help of our advisory and scientific committee members from different universities all around the world, the authors  decided to gather the  test problems of the  ISCSO in this  technical report as an optimization test set. Beside the well -known traditional benchmark instances, the  provided  test  set  might  also  be  used  for  further  performance  evaluation  of  future structural optimization algorithms.



Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb