Search published articles


Showing 4 results for Kardoust

A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract

Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
 
D. Sedaghat Shayegan, A. Amirkardoust,
Volume 13, Issue 3 (7-2023)
Abstract

In this article, spectral matching of ground motions is presented via the Mouth Brooding Fish (MBF) algorithm that is recently developed. It is based on mouth brooding fish life cycle. This algorithm utilizes the movements of the mouth brooding fish and their children’s struggle for survival as a pattern to find the best possible answer. For this purpose, wavelet transform is used to decompose the original ground motions to several levels and then each level is multiplied by a variable. Subsequently, this algorithm is employed to determine the variables and wavelet transform modifies the recorded accelerograms until the response spectrum gets close to a specified design spectrum. The performance of this algorithm is investigated through a numerical example and also it is compared with CBO and ECBO algorithms. The numerical results indicate that the MBF algorithm can to construct very promising results and has merits in solving challenging optimization problems.
 
S. S. Shahebrahimi, A. Lork, D. Sedaghat Shayegan, A. A. Kardoust,
Volume 14, Issue 1 (1-2024)
Abstract

One of the important factors in the efficiency of construction operations is the proper replacement construction projects of the construction site layout planning (CSLP). That this would not be possible without oversight of the factors affecting it. Therefore, the study of factors affecting the replacement of construction site layout is considered vital in projects. Different factors are involved in the replacement of CSLP, which examine the economic dimension and the effects of changing costs and time during work. Due to the complexity of the subject, it is solved using hyper-innovative algorithms. This research is a linear programming model for optimizing the layout of equipment for Launcher/Receiver (L/R) stations. Due to the complexity of the problem, the invasive weed algorithm was used to achieve an optimal response. The goal is to minimize the total costs associated with transportation, relocation and relocation, and changes during implementation. The results of the calculations and output of the algorithm showed the variation of the answer in the optimal layout of the CSLP, which was obtained at the lowest distance and the most optimal mode. The results were presented in a similar scenario in the projects.
 
O. Tavakoli, D. Sedaghat Shayegan, A. Amirkardoust,
Volume 14, Issue 4 (10-2024)
Abstract

Tower cranes are essential for both vertical and horizontal movement of materials in construction and port operations. Optimizing their placement is crucial for reducing costs and enhancing overall efficiency. This study addresses the optimization of tower crane placement using the recently developed Mouth Brooding Fish (MBF) algorithm. The MBF algorithm is inspired by the life cycle of mouth-brooding fish, employing their behavioral patterns and the survival challenges of their offspring to find optimal solutions. The performance of the MBF algorithm is compared with the Genetic Algorithm (GA), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO). The results demonstrate that the MBF algorithm is effective and has potential advantages in tackling complex optimization problems.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb