Showing 85 results for Kaveh
Ali Kaveh, Siamak Talatahari,
Volume 1, Issue 1 (3-2011)
Abstract
Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence of tasks entailed by the optimization process is changed so that the updating of the design variables can directly be performed after each movement. In this way, the new method acts as a single-agent algorithm while preserving the positive characteristics of its original multi-agent formulation.
Hossein Rahami, Ali Kaveh, M. Aslani, R. Najian Asl,
Volume 1, Issue 1 (3-2011)
Abstract
In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a large number of variables and constraints are chosen to show the robustness of the algorithm.
A. Kaveh, M. Kalateh-Ahani, M.s. Masoudi,
Volume 1, Issue 2 (6-2011)
Abstract
Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimization problems, is employed for size optimization of steel space trusses. Design examples reveal competitive performance of the algorithm compared to the other advanced metaheuristics.
S. Talatahari, A. Kaveh, R. Sheikholeslami,
Volume 1, Issue 2 (6-2011)
Abstract
The Charged System Search (CSS) is combined to chaos to solve mathematical global optimization problems. The CSS is a recently developed meta-heuristic optimization technique inspired by the governing laws of physics and mechanics. The present study introduces chaos into the CSS in order to increase its global search mobility for a better global optimization. Nine chaos-based CSS (CCSS) methods are developed, and then for each variant, the performance of ten different chaotic maps is investigated to identify the most powerful variant. A comparison of these variants and the standard CSS demonstrates the superiority and suitability of the selected variants for the benchmark mathematical optimization problems.
A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, C. Farahmandpour,
Volume 1, Issue 3 (9-2011)
Abstract
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an optimal manner and to direct the agents toward the best regions, resulting in possible reduction of the number of particles. To show the computational advantages of the new PSO-SA method, some benchmark numerical examples are studied. The PSO-SA algorithm converges to better or at least the same solutions, while the number of structural analyses is significantly reduced
F.r. Rofooei, A. Kaveh, F.m. Farahani,
Volume 1, Issue 3 (9-2011)
Abstract
Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For this purpose, a number of 2-D structural models with varying number of bays and stories are designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The seismically–induced damages to these structural models are determined by performing extensive nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the structural models. A database is generated using the level of induced damages versus different parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural networks are trained for estimation of the probable seismic damage index.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)
Abstract
This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
A. Kaveh, V.r. Mahdavi,
Volume 1, Issue 4 (12-2011)
Abstract
In recent years, the importance of economical considerations in the field of dam engineering has motivated many researchers to propose new methods for minimizing the cost of dames and in particular arch dams. This paper presents a method for shape optimization of double curvature arch dams corresponding to minimum construction cost while satisfying different constraints such as natural frequencies, stability and geometrical limitations. For optimization, the charged system search (CSS) and particle swarm optimization (PSO) are employed. To validate the finite element model, a real arch dam is considered as a test example. The results of the present method are compared to those of other optimization algorithms for the selected example from literature.
A. Kaveh, M. Hassani,
Volume 1, Issue 4 (12-2011)
Abstract
In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains the formulation of the complementary energy of truss and frame structures for the purpose of linear analysis. In the second part material and geometric nonlinearity of structure is considered using Ramberg-Osgood relationships. In the last part optimal simultaneous analysis and design of structure is studied. In each part, the efficiency of the methods is illustrated by means simple examples.
A. Kaveh, T. Bakhshpoori, M. Ashoory,
Volume 2, Issue 1 (3-2012)
Abstract
Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.
A. Tahershamsia, A. Kaveh, R. Sheikholeslamia , S. Talatahari,
Volume 2, Issue 1 (3-2012)
Abstract
The Big Bang-Big Crunch (BB–BC) method is a relatively new meta-heuristic algorithm which inspired by one of the theories of the evolution of universe. In the BB–BC optimization algorithm, firstly random points are produced in the Big Bang phase then these points are shrunk to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. In this paper, the BB–BC algorithm is presented for optimal cost design of water distribution systems and employed to optimize different types of hydraulic networks with discrete variables. The results demonstrate the efficiency of the proposed method compared to other algorithms.
A. Kaveh , V.r. Mahdavi,
Volume 2, Issue 2 (6-2012)
Abstract
Endurance Time Acceleration Functions are specially predesigned intensifying excitation functions that their amplitude increases with time. On the other hand, wavelet transform is a mathematical tool that indicates time variations of frequency in a signal. In this paper, an approach is presented for generating endurance time acceleration functions (ETAFs) whose response spectrum is compatible with the European Code regulations (EC8) elastic spectrum. Method applied is a modification of data in time and frequency domain. For this purpose, wavelet transform has been used to decompose a series of random points to several levels such that each level covers a special range of frequency, then every level is divided into the numbers of equal time intervals and each interval of time is multiplied by a variable. Subsequently, the mathematical unconstrained optimization algorithm is used to calculate the variables and minimize error between response and target spectra. The prosed procedure is used in two methods. Then with two methods, two different acceleration functions are produced.
H. Rahami, A. Kaveh, H. Mehanpour,
Volume 2, Issue 2 (6-2012)
Abstract
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the non-regular part of such model are ordered followed by ordering the nodes of the regular part. With this ordering the graph matrices will be separated into two blocks. The eigensolution of the non-regular part can be performed by an iterative method, and those of the regular part can easily be calculated using decomposition approaches studied in our previous articles. Some numerical examples are included to illustrate the efficiency of the new method.
A. Kaveh, A. Zolghadr,
Volume 2, Issue 3 (7-2012)
Abstract
It is well known that damaged structural members may alter the behavior of the structures considerably. Careful observation of these changes has often been viewed as a means to identify and assess the location and severity of damages in structures. Among the responses of a structure, natural frequencies are both relatively easy to obtain and independent from external excitation, and therefore, could be used as a measure of the structure's behavior before and after an extreme event which might have lead to damage in the structure. Inverse problem of detection and assessment of structural damage using the changes in natural frequencies is addressed in this paper. This can be considered as an optimization problem with the location and severity of the damages being its variables. The objective is to set these variables such that the natural frequencies of the finite element model correspond to the experimentally measured frequencies of the actual damaged structure. In practice, although the exact number of damaged elements is unknown, it is usually believed to be small compared to the total number of elements of the structure. In beams and frames particularly, the necessity to divide the structural members into smaller ones in order to detect the location of the cracks more accurately, deepens this difference. This can significantly improve the performance of the optimization algorithms in solving the inverse problem of damage detection. In this paper, the Charged System Search algorithm developed by Kaveh and Talatahari [1] is improved to comprise the above mentioned point. The performance of the improved algorithm is then compared to the standard one in order to emphasize the efficiency of the proposed algorithm in damage detection inverse problems.
A. Kaveh, P. Zakian,
Volume 2, Issue 3 (7-2012)
Abstract
In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and performance based seismic design optimization is accomplished. Capacity curves of the optimal solution are determined and compared incorporates soil–structure interaction. Also an optimization based method is proposed for bilinear approximation of capacity curve. These are a new methodology for seismic RC shear wall optimum design.
A. Kaveh, N. Shamsapour, R. Sheikholeslami, M. Mashhadian,
Volume 2, Issue 4 (10-2012)
Abstract
This paper presents application of an improved Harmony Search (HS) technique and Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast transport energy demand in Iran. These models are developed to estimate the future energy demands based on population, gross domestic product (GDP), and the data of numbers of vehicles (VEH). Transport energy consumption in Iran is considered from 1968 to 2009 as the case of this study. The available data is partly used for finding the optimal, or near optimal values of the weighting parameters (1968-2003) and partly for testing the models (2004-2009). Finally transport energy demand in Iran is forecasted up to the year 2020.
A. Kaveh, B. Ahmadi, F. Shokohi, N. Bohlooli,
Volume 3, Issue 1 (3-2013)
Abstract
The present study encompasses a new method to simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Charged System Search (CSS) optimization algorithm. Besides design and cost optimization of WDSs are performed simultaneous with analysis process using a new objective function in order to satisfying the analysis criteria, design constraints and cost optimization. Comparison of achieved results clearly signifies the efficiency of the present method in reducing the WDSs construction cost and computational time of the analysis. These comparisons are made for three benchmark practical examples of WDSs.
A. Kaveh, V.r Kalatjari, M.h Talebpour , J. Torkamanzadeh,
Volume 3, Issue 1 (3-2013)
Abstract
Different methods are available for simultaneous optimization of cross-section, topology and geometry of truss structures. Since the search space for this problem is very large, the probability of falling in local optimum is considerably high. On the other hand, different types of design variables (continuous and discrete) lead to some difficulties in the process of optimization. In this article, simultaneous optimization of cross-section, topology and geometry of truss structures is performed by utilizing the Multi Heuristic based Search Method (MHSM) that overcome the above mentioned problem and obtains good results. The presented method performs the optimization by dividing the searching space into five subsections in which an MHSM is employed. These subsections are named procedure islands. Some examples are then presented to scrutinize the method more carefully. Results show the capabilities of the present algorithm for optimal design of truss structures.
M. Grigorian, A. Kaveh,
Volume 3, Issue 2 (6-2013)
Abstract
This article introduces three simple ideas that lead to the efficient design of regular moment frames. The finite module concept assumes that the moment frame may be construed as being composed of predesigned, imaginary rectangular modules that fit into the bays of the structure. Plastic design analysis aims at minimizing the demand-capacity ratios of elements of ductile moment frames by inducing the strength and stiffnesses of groups of members in accordance with certain design criteria, rather than investigating their suitability against the same rules of compliance. Collapse modes and stability conditions are imposed rather than investigated. In short, theory of structures is applied rather than followed. Plastic displacement control suggests that in addition to conducting failure analysis, the maximum displacements of plausible failure modes at incipient collapse should also be taken into consideration. While two collapse mechanisms may share the same carrying capacity, their maximum displacements may be different.
H. Rahami, A. Kaveh , H. Mehanpour,
Volume 3, Issue 3 (9-2013)
Abstract
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models.
In the present method, for a non-regular model, first the nodes of the non-regular part of such model are ordered followed by ordering the nodes of the regular part. With this ordering the graph matrices will be separated into two blocks. The eigensolution of the non-regular part can be performed by an iterative method, and those of the regular part can easily be calculated using decomposition approaches studied in our previous articles. Some numerical examples are included to illustrate the efficiency of the new method.