Showing 3 results for Khavaninzadeh
M. Shahrouzi, N. Khavaninzadeh , A. Jahanbakhsh,
Volume 10, Issue 2 (4-2020)
Abstract
Partricular features of overpassing local optima and providing near-optimal soultion in practical time has led researchers to apply metaheuristics in several engineering problems. Optimal design of diagrids as one of the most efficient structural systems in tall buildings has been concerned here. Jaya algorithm as a recent paramter-less optimization method is employed to solve the problem using a set of available sections. Furthermore, passive congregation is embedded in Jaya without adding any extra control parameters. Applyig the method in a number of real-size structural examples including diagrids, exhibits performance improvement by the new hybrid algorithm with respect to Jaya.
L. Coelho, M. Shahrouzi, N. Khavaninzadeh,
Volume 14, Issue 4 (10-2024)
Abstract
Diagrids are of practical interest in high-rise buildings due to their architectural configuration and efficiency in withstanding lateral loads by exterior diagonal members. In the present work, diagrid models are screened based on a sizing optimization approach. Section index of each member group is treated as a discrete design variable in the optimization problem to be solved. The structural constraints are evaluated due to Load and Resistant Design Factor regulations under both gravitational and wind loadings. The research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic paradigm for such a large-scale and highly constrained discrete problem. Second, the effect of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third, distinct cases of rigid and flexible bases are compared to study the effect of such boundary conditions on the results. The effect of soil flexibility beneath the foundation on the optimal design was found highly dependent on the diagrid geometry. The best weight and performance in most of the treated examples belong to the geometry that covers two stories by every grid line on the flexible-base.
A. Kaveh, N. Khavaninzadeh,
Volume 14, Issue 4 (10-2024)
Abstract
In this paper, a neural network is trained for optimal nodal ordering of graphs to obtain a small wavefront using soft computing. A preference function consists of six inputs that can be seen as a generalization of Sloan's function. These six inputs represent the different connection characteristics of graph models. This research is done with the aim of comparing Sloan's theoretical numbering method with Sloan's developed method with neural networks and WSA meta-heuristic algorithm. Unlike the Sloan algorithm, which uses two fixed coefficients, six coefficients are used here, based on the evaluation of artificial neural networks. The weight of networks is obtained using Water Strider algorithm. Examples are included to demonstrate the performance of the present hybrid method.