Search published articles


Showing 13 results for Salajegheh

M. Mashayekhi, M.j. Fadaee, J. Salajegheh , E. Salajegheh,
Volume 1, Issue 2 (6-2011)
Abstract

A two-stage optimization method is presented by employing the evolutionary structural optimization (ESO) and ant colony optimization (ACO), which is called ESO-ACO method. To implement ESO-ACO, size optimization is performed using ESO, first. Then, the outcomes of ESO are employed to enhance ACO. In optimization process, the weight of double layer grid is minimized under various constraints which artificial ground motion is used to calculate the structural responses. The presence or absence of elements in bottom and web grids and also cross-sectional areas are selected as design variables. The numerical results reveal the computational advantages and effectiveness of the proposed method.
R. Kamyab, E. Salajegheh,
Volume 1, Issue 3 (9-2011)
Abstract

This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number of the structural nodes and elements of scallop domes, nonlinear time history analysis of such structures is time consuming. In this study to reduce the computational burden radial basis function (RBF) neural network is utilized. The type of inputs of neural network models seriously affects the computational performance and accuracy of the network. Two types of input vectors: cross-sectional properties and natural periods of the structures can be employed for neural network training. In this paper the most influential natural periods of the structure are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are used as the input vector of the RBF network. Results of illustrative example demonstrate high performance and computational accuracy of RBF network.
M. Mashayekhi, J. Salajegheh, M.j. Fadaee , E. Salajegheh,
Volume 1, Issue 4 (12-2011)
Abstract

For reliability-based topology optimization (RBTO) of double layer grids, a two-stage optimization method is presented by applying “Solid Isotropic Material with Penalization” and “Ant Colony Optimization” (SIMP-ACO method). To achieve this aim, first, the structural stiffness is maximized using SIMP. Then, the characteristics of the obtained topology are used to enhance ACO through six modifications. As numerical examples, reliability-based topology designs of typical double layer grids are obtained by ACO and SIMP-ACO methods. Their numerical results reveal the effectiveness of the proposed SIMPACO method for the RBTO of double layer grids.
J. Salajegheh, S. Khosravi,
Volume 1, Issue 4 (12-2011)
Abstract

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO includes three phases. In the first phase, a preliminary optimization is accomplished using GSA as local search. In the second phase, an optimal initial swarm is produced using the optimum result of GSA. Finally, PSO is employed to find the optimum design using the optimal initial swarm. In order to reduce the computational cost of dam analysis subject to earthquake loading, weighted least squares support vector machine (WLS-SVM) is employed to accurately predict dynamic responses of gravity dams. Numerical results demonstrate the high performance of the hybrid meta-heuristic optimization for optimal shape design of concrete gravity dams. The solutions obtained by GSA-PSO are compared with those of GSA and PSO. It is revealed that GSA-PSO converges to a superior solution compared to GSA and PSO, and has a lower computation cost.
S. Gerist, S.s. Naseralavi , E. Salajegheh,
Volume 2, Issue 2 (6-2012)
Abstract

In damage detection the number of elements is generally more than the number of measured frequencies. Consequently, the corresponding damage detection equation is undetermined and thus has infinite solutions. Since in the damaged structures most of their elements remain healthy, the sparsest solution for the damage detection equation is mostly the actual damage. In the proposed method, the damage equation is first linearized in various ways using random finite difference increments. The sparsest solutions for created linear system of equations are derived using basis pursuit. These solutions are considered as the first population for a continuous genetic algorithm to obtain the damage solution. For investigation of the proposed method three case studies are considered. Simulation results confirm the efficiency of the proposed method compared to those found in the literature.
S.s. Naseralavi, E. Salajegheh, J. Salajegheh, M. Ziaee,
Volume 2, Issue 4 (10-2012)
Abstract

A novel two-stage algorithm for detection of damages in large-scale structures under static loads is presented. The technique utilizes the vector of response change (VRC) and sensitivities of responses with respect to the elemental damage parameters (RSEs). It is shown that VRC approximately lies in the subspace spanned by RSEs corresponding to the damaged elements. The property is leveraged in the first stage of the proposed method by seeking RSEs whose spanned subspace best contains the VRC. Consequently, the corresponding elements are regarded as damage candidates. To alleviate the exploration among RSEs, they are first partitioned into several clusters. Subsequently, discrete ant colony optimization (ACO) is utilized to find the clusters containing the RSEs of damaged elements. In the second stage of the algorithm, damage amounts for the restricted elements are determined using a continuous version of ACO. Two numerical examples are studied. The results illustrate that the method is both robust and efficient for detection of damages in large-scale structures.
S. Beygzadeh, E. Salajegheh, P. Torkzadeh, J. Salajegheh, S.s. Naseralavi,
Volume 3, Issue 1 (3-2013)
Abstract

In this study, efficient methods for optimal sensor placement (OSP) based on a new geometrical viewpoint for damage detection in structures is presented. The purpose is to minimize the effects of noise on the damage detection process. In the geometrical viewpoint, a sensor location is equivalent to projecting the elliptical noise on to a face of response space which is corresponding to the sensor. The large diameters of elliptical noise make the damage detection process problematic. To overcome this problem, the diameters of the elliptical noise are scaled by filter factor to obtain an elliptical called equivalent elliptical noise. Based on the geometrical viewpoint, six simple forward algorithms are introduced to find the OSP. To evaluate the merits of the proposed method, a two-dimensional truss, under both static and dynamic loads, is studied. Numerical results demonstrate the efficiency of the proposed method.
P. Torkzadeh, Y. Goodarzi , E. Salajegheh,
Volume 3, Issue 3 (9-2013)
Abstract

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal strain energy between the analytical models and the responses measured in damaged models using time history dynamic analysis data. In this paper, damages are modeled as a reduction of elasticity modulus of structural elements. The detection of structural damages is formulated as an unconstrained optimization problem that is solved by HPSO algorithm. To evaluate the performance of the proposed method, the results are compared with those provided in previous studies. To demonstrate the ability of this method for detection of multiple structural damages, different types of damage scenarios are considered. The results show that the proposed method can detect the exact locations and the severity of damages with a high accuracy in large-scale structures.
R. Kamyab , E. Salajegheh,
Volume 4, Issue 2 (6-2014)
Abstract

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinearities. Operation of HSFA includes three phases. In the first phase, a preliminary optimization is accomplished using HS. In the second phase, an optimal initial population is produced using the first phase results. In the last phase, FA is employed to find optimum design using the produced optimal initial population. The optimum design obtained by HSFA is compared with those of HS and FA. It is demonstrated that the HSFA converges to better solution compared to the other algorithms.
H. Fathnejat, P. Torkzadeh, E. Salajegheh, R. Ghiasi,
Volume 4, Issue 4 (11-2014)
Abstract

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using properly trained cascade feed-forward neural network (CFNN). In order to achieve an appropriate artificial neural network (ANN) model for MSEBI evaluation, a set of feed-forward artificial neural networks which are more suitable for non-linear approximation, are trained. All of these neural networks are tested and the results demonstrate that the CFNN model with log-sigmoid hidden layer transfer function is the most suitable ANN model among these selected ANNs. Moreover, to increase damage severity detection accuracy, the optimization process of damage severity detection is carried out by particle swarm optimization (PSO) whose cost function is constructed based on MSEBI. To validate the proposed solution method, two structural examples with different number of members are presented. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging PSO algorithm by efficient approximation mechanism of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
M. Mashayekhi, E. Salajegheh , M. Dehghani,
Volume 5, Issue 3 (8-2015)
Abstract

In this paper, for topology optimization of double layer grids, an efficient optimization method is presented by combination of Imperialist Competitive Algorithm (ICA) and Gravitational Search Algorithm (GSA) which is called ICA-GSA method. The present hybrid method is based on ICA but the moving of countries toward their relevant imperialist is done using the law of gravity of GSA. In topology optimization process, the weight of the structure is minimized subjected to displacements of joints, internal stress and slenderness ratio of members constraints. Through numerical example, topology optimization of a typical large-scale double layer grid is obtained by ICA, GSA and ICA-GSA methods. The numerical results indicate that the proposed algorithm, ICA-GSA, executes better than ICA, GSA and the other methods presented in the literatures for topology optimization of largescale skeletal structures.
F. Salajegheh , E. Salajegheh ,
Volume 11, Issue 2 (5-2021)
Abstract

An ensemble method is introduced to solve optimization problems efficiently. The method is mainly based on using the gradient directions along which, the function is reduced at most. Large step sizes are employed for exploration in the first phase. The use of smaller step sizes in subsequence phases will allow for more accurate exploration. To increase the efficiency of the gradient techniques, some enhancements such as mutation, crossover and fly-back operations are introduced to explore the entire design space. The efficiency and the reliability of the multi-phase gradient approach are examined by solving 29 complicated multimodal functions introduced in CEC 2017 and a structural shape optimization problem under frequency constraints. The results are compared with several well-known population-based algorithms.
V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract

The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb