Search published articles


Showing 94 results for Li

A. Farshidianfar, S. Soheili,
Volume 3, Issue 3 (9-2013)
Abstract

This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for high-rise structures considering Soil Structure Interaction (SSI) effects. Three optimization methods, namely the ant colony optimization (ACO) technique together with artificial bee colony (ABC) and shuffled complex evolution (SCE) methods are utilized for the optimization of TMD Mass, damping coefficient and spring stiffness as the design variables. The objective is to decrease the maximum displacement of structure. The 40 story structure with three soil types is employed to design TMD for six types of far field earthquakes. The results are then utilized to obtain relations for the optimized TMD parameters with SSI effects. The relations are then applied to design TMD for the same structure with another five types of far field oscillations, and reasonable results are achieved. For further investigations, the obtained relations are utilized to design TMD for a new structure, and the reduction values are obtained for five types of earthquakes, which show acceptable results. This study improves the understanding of earthquake oscillations, and helps the designers to achieve the optimized TMD for high-rise buildings.
W. Cheng, F. Liu , L.j. Li,
Volume 3, Issue 3 (9-2013)
Abstract

A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suitability of TLBO for size and geometry optimization of structures in structural optimal design was tested by three truss examples. Meanwhile, these examples were used as benchmark structures to explore the effectiveness and robustness of TLBO. The results were compared with those of other algorithms. It is found that TLBO has advantages over other optimal algorithms in convergence rate and accuracy when the number of variables is the same. It is much desired for TLBO to be applied to the tasks of optimal design of engineering structures.
S. Gholizadeh , V. Aligholizadeh,
Volume 3, Issue 3 (9-2013)
Abstract

The main aim of the present study is to achieve optimum design of reinforced concrete (RC) plane moment frames using bat algorithm (BA) which is a newly developed meta-heuristic optimization algorithm based on the echolocation behaviour of bats. The objective function is the total cost of the frame and the design constraints are checked during the optimization process based on ACI 318-08 code. Design variables are the cross-sectional assignments of the structural members and are selected from a data set containing a finite number of sectional properties of beams and columns in a practical range. Three design examples including four, eight and twelve story RC frames are presented and the results are compared with those of other algorithms. The numerical results demonstrate the superiority of the BA to the other meta-heuristic algorithms in terms of the frame optimal cost and the convergence rate.
S. Gholizadeh, V. Aligholizadeh , M. Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract

In the present study, the reliability assessment of performance-based optimally seismic designed reinforced concrete (RC) and steel moment frames is investigated. In order to achieve this task, an efficient methodology is proposed by integrating Monte Carlo simulation (MCS) and neural networks (NN). Two NN models including radial basis function (RBF) and back propagation (BP) models are examined in this study. In the proposed methodology, MCS is used to estimate the total exceedence probability associated with immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels. To reduce the computational burden of MCS process, the required nonlinear responses of the generated structures are predicted by RBF and BP models. The numerical results imply the superiority of BP to RBF in prediction of structural responses associated with performance levels. Finally, the obtained results demonstrate the high efficiency of the proposed methodology for reliability assessment of RC and steel frame structures.
J. Jin, L.j. Li, J.n. He,
Volume 4, Issue 1 (3-2014)
Abstract

A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connections which more accurately reflect the practical situation. The QGSO is combined with the constraint from the penalty coefficients and dynamic time-history analysis. The performance of the QGSO on seismic design has been tested on a two-bay five-layer steel frame in this paper. The result shows that, compared with the PSO algorithm, the QGSO algorithm has better performance in terms of convergence rate and the ability to escape from local optimums. Moreover, it is feasible and effective to apply the QGSO to the seismic optimal design of steel framework.
A. Gholizad , S. D. Ojaghzadeh Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract

Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificial neural network (ANN) has been trained in this article to estimate these forces. This ANN was trained on the results of time history analysis of a three-story building under 702 different loadings. Results of numerical examples verify that the trained ANN can predict the expected forces with negligible deviations.
S. M. Tavakkoli , B. Hassani,
Volume 4, Issue 2 (6-2014)
Abstract

A new method for structural topology optimization is introduced which employs the Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which are also used for creating the geometry and the surface of solution of the elasticity problem. Inspiration of the level set method zero level of the function describes the boundary of the structure. An optimality criterion is derived to improve the implicit function towards the optimum boundaries. The last section of this paper is devoted to some numerical examples in order to demonstrate the performance of the method as well as the concluding remarks.
L. J. Li, Z. H. Huang,
Volume 4, Issue 2 (6-2014)
Abstract

This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tabu search and a crowded distance operator. Two objective optimization problems, the minimum weight and maximum fundamental frequency, of four truss structures were optimized using the IMGSO. The results show that IMGSO rapidly generates the non-dominated set and is able to handle constraints. The Pareto front of the solutions from IMGSO is clearly dominant and has good diversity.
S. Gholizadeh , H. Asadi , A. Baghchevan,
Volume 4, Issue 3 (9-2014)
Abstract

The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvements are implemented on the basic algorithms. The proposed MOOAs are examined for three truss optimization problems, and the results are compared to those of some other well-known methods. The numerical results demonstrate that the proposed MOOAs possess better computational performance compared to the other algorithms.
Y. Y. Wang , L. J. Li,
Volume 5, Issue 1 (1-2015)
Abstract

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artificial fish swarm algorithm (GS-AFSA). This algorithm has been applied to three different discrete truss optimization problems. The optimization results are compared with those obtained using the standard GSO, the AFSA and the quick group search optimizer (QGSO). The proposed GS-AFSA eliminated the shortcomings of GSO regarding falling into the local optimum by taking advantage of AFSA’s stable convergence characteristics and achieving a better convergence rate and convergence accuracy than the GSO and the AFSA. Furthermore, the GS-AFSA has a superior convergence accuracy compared to the QGSO, all while solving a complicated structural optimization problem containing numerous design variables.
J. C. Liang, L. J. Li, N. He,
Volume 5, Issue 1 (1-2015)
Abstract

A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal pushover analysis, is carried out for the structures. Four optimality algorithms, namely, NSGA-II, MOPSO, MGSO, and MOHPSO, were used for structural optimisation to compare the effectiveness of the algorithms. The calculation results indicate that MOHPSO outperformed the other algorithms in terms of solution stability, universality, and consistency of the distribution of the Pareto front and the ability to consider constraints. The population can converge to the true Pareto front in the latter generations, which indicates that MOHPSO is effective for engineering multi-objective optimality problems.
Ch Gheyratmand, S. Gholizadeh , B. Vababzadeh,
Volume 5, Issue 2 (3-2015)
Abstract

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during the optimization process subject to constraints on demand capacity ratios (DCRs) of structural members. Three benchmark design examples are tested using ABCA and IABCA and the results are compared with those of presented in the literature. The numerical results indicate that the proposed IABCA is an efficient computational tool for discrete optimization of RC frames.
S. Gholizadeh,
Volume 5, Issue 4 (7-2015)
Abstract

The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processes is implemented in which the initial population of each process is selected from the neighboring region of the best design found in the previous optimization process. This procedure is repeated until a termination criterion is met. Two illustrative examples are presented and optimization is performed by GWA and SGWA and two other meta-heuristics. The numerical results indicate that the proposed SGWA utperforms the other algorithms in finding optimal design of nonlinear double layer grids.
M. H. Ranginkaman, A. Haghighi, H. M. Vali Samani,
Volume 6, Issue 1 (1-2016)
Abstract

Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is measured. Using the Fast Fourier Transform (FFT) the measured signal is transferred into the frequency domain. Besides, using the transfer matrix method, a frequency response analysis model for the pipeline is developed as a function of the leak parameters including the number, location and size of leaks. This model predicts the frequency responses of the pipe in return for any random set of leak parameters. Then, a nonlinear inverse problem is defined to minimize the discrepancies between the observed and predicted responses at the valve location. To find the pipeline leaks the method of Particle Swarm Optimization (PSO) is coupled to the transient analysis model while, the leak parameters are the optimization decision variables. The model is successfully applied against an example pipeline and in both terms of efficiency and reliability the results are satisfactory.
A. Ahmadi Najl, A. Haghighi, H. M. Vali Samani,
Volume 6, Issue 2 (6-2016)
Abstract

The interbasin water transfer is a remedy to mitigate the negative issues of water shortage in arid and semi-arid regions. In  a water transfer project  the receiving basin always  benefits while, the sending basin may suffer. In this study, the project of interbasin water transfer from Dez water resources system in south-west of Iran to the central part of the contrary is 
investigated during a drought period. To this end, a multi-objective optimization model is developed  based  on  the  Non  Dominated  Sorting  Genetic  Algorithm  (NSGA-II).  The optimum trade-off between the water supply benefits into and out of the Dez River basin as well  as  energy  production  is  derived.  Formulating  the  problem  as  a  multi-objective 
optimization provides a better insight into the gains and losses of a water transfer project. Analyzing the case study, revealed that to reach an acceptable level of reliability for meeting the water demands it is no longer possible to generate hydropower energy with high levels of reliability. 


M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse  problem,  which  is  optimized  by  the  ECBO  algorithm,  and  the  damages  in  the structures  are  fully  detected.  Furthermore,  for  simulating  the  real  situation,  the  effect  of measured noises is considered on the structure, to obtain more accurate results.


H. S. Kazemi, S. M. Tavakkoli, R. Naderi,
Volume 6, Issue 2 (6-2016)
Abstract

The Isogeometric Analysis (IA) is utilized for structural topology optimization  considering minimization of weight and local stress constraints. For this purpose, material density of the structure  is  assumed  as  a  continuous  function  throughout  the  design  domain  and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are considered as design variables of the optimization problem that can change the topology during the optimization process. For initial design, weight and stresses of the structure are obtained based on full material density over the design domain. The  Method  of  Moving  Asymptotes  (MMA)  is  employed  for  optimization  algorithm. Derivatives of the objective function and constraints with respect to the design variables are determined  through  a  direct  sensitivity  analysis.  In  order  to  avoid  singularity  a  relaxation technique  is  used  for  calculating  stress  constraints.  A  few  examples  are  presented  to demonstrate the performance of the method. It is shown that using the IA method and an appropriate stress relaxation technique can lead to reasonable optimum layouts.


R. Kamyab Moghadas, S. Gholizadeh,
Volume 7, Issue 1 (1-2017)
Abstract

In this study an efficient meta-heuristic is proposed for layout optimization of truss structures by combining cellular automata (CA) and firefly algorithm (FA). In the proposed meta-heuristic, called here as cellular automata firefly algorithm (CAFA), a new equation is presented for position updating of fireflies based on the concept of CA. Two benchmark examples of truss structures are presented to illustrate the efficiency of the proposed algorithm. Numerical results reveal that the proposed algorithm is a powerful optimization technique with improved convergence rate in comparison with other existing algorithms.


S. H. Mirmohammadi, E. Babaee Tirkolaee, A. Goli, S. Dehnavi - Arani,
Volume 7, Issue 1 (1-2017)
Abstract

The travel times among demand points are strongly influenced by traffic in a supply chain. Due to this fact, the service times for customers are variable. For this reason, service time is often changes over a time interval in a real environment. In this paper, a time-dependent periodic green vehicle routing problem (VRP) considering the time windows for serving the customers and multiple trip is developed with this assumption that urban traffic would disrupt timely services. The objective function of proposed problem is to minimize the total amount of carbon dioxide emissions produced by the vehicle, earliness and lateness penalties costs and costs of used vehicles. At first, a novel linear integer mathematical model is formulated and then the model is validated via solving some test problems by CPLEX solver. Finally, the sensitivity analysis is carried out to study the role of two critical parameters in the optimal solution.


S. Gholizadeh, M. Ebadijalal,
Volume 7, Issue 2 (3-2017)
Abstract

The objective of the present paper is to propose a sequential enhanced colliding bodies optimization (SECBO) algorithm for implementation of seismic optimization of steel braced frames in the framework of performance-based design (PBD). In order to achieve this purpose, the ECBO is sequentially employed in a multi-stage scheme where in each stage an initial population is generated based on the information derived from the results of previous stages. The required structural seismic responses, at performance levels, are evaluated by performing nonlinear pushover analysis. Two numerical examples are presented to illustrate the efficiency of the proposed SECBO for tackling the seismic performance-based optimization problem. The numerical results demonstrate the computational advantages of the SECBO algorithm.



Page 2 from 5     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb