Showing 279 results for Optimization
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract
Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
A. Kaveh, M. R. Seddighian, N. Farsi,
Volume 13, Issue 2 (4-2023)
Abstract
Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.
M. Shahrouzi, A. Salehi,
Volume 13, Issue 2 (4-2023)
Abstract
In most practical cases, structural design variables are linked to a discrete list of sections for optimal design. Cardinality of such a discrete search space is governed by the number of alternatives for each member group. The present work offers an adaptive strategy to detect more efficient alternatives and set aside redundant ones during optimization. In this regard, the difference between the lower and the upper bounds on such variables is gradually reduced by a procedure that adapts history of the selected alternatives in previous iterations. The propsed strategy is implemented on a hybrid paritcle swarm optimizer and imperialist competitive algorithm. The former is a basic swarm intelligent method while the later utilizes subpopulations in its search. Spatial and large-scale structures in various shapes are treated showing successive performance improvement. Variation of a diversity index and resulting band size are traced and discussed to declare behavior merits of the proposed adaptive band strategy.
M. Nabati , S. Gholizadeh,
Volume 13, Issue 2 (4-2023)
Abstract
The purpose of the current study is to design steel moment resisting frames for optimal weight in the context of performance-based design. The performance-based design optimization of steel moment frames is a highly nonlinear and complex optimization problem having many local optima. Therefore, an efficient algorithm should be used to deal with this class of structural optimization problems. In the present study, a modified Newton metaheuristic algorithm (MNMA) is proposed for the solution of the optimization problem. In fact, MNMA is the improved version of the original Newton metaheuristic algorithm (NMA), which is a multi-stage optimization technique in which an initial population is generated at each stage based on the results of the previous stages. Two illustrative examples of 5-, and 10-story steel moment frames are presented and a number of independent optimization runs are achieved by NMA and MNMA. The numerical results demonstrate the better performance of the proposed MNMA compared to the NMA in solving the performance-based optimization problem of steel moment frames.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 13, Issue 2 (4-2023)
Abstract
In this study, the response of semi-actively controlled structures is investigated, with a focus on the effects of magneto-rheological (MR) damper distribution on the seismic response of structures such as drift and acceleration. The proposed model is closed loop, and the structure's response is used to determine the optimal MR damper voltage. A Fuzzy logic controller (FLC) is employed to calculate the optimum voltage of MR dampers. Drifts and velocities of the structure’s stories are used as FLC inputs. The FLC parameters and the distribution of MR dampers across stories are determined using the NSGA-II, when the structure is subjected to the El-Centro earthquake, so as to minimize the peak inter-story drift ratio and peak acceleration simultaneously. The efficiency of the proposed approach is illustrated through a twenty-story nonlinear benchmark structure. Non-dominated solutions are obtained to minimize the inter-story drift and acceleration of structures and Pareto front produced. Then, the non-dominated solutions are used to control the seismic response of the benchmark structure, which was subjected to the Northridge, Kobe, and Hachinohe earthquake records. In the numerical example the maximum drift and acceleration decrease by about 36.3% and 15%, respectively, in the El-Centro earthquake. The results also demonstrate that the proposed controller is more efficient in reducing drift than reducing acceleration.
M. Paknahad, P. Hosseini, S.j.s. Hakim,
Volume 13, Issue 2 (4-2023)
Abstract
Metaheuristic algorithms have become increasingly popular in recent years as a method for determining the optimal design of structures. Nowadays, approximate optimization methods are widely used. This study utilized the Self Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm as an approximate optimization method, since the EVPS algorithm requires experimental parameters. As a well-known and large-scale structure, the 582-bar spatial truss structure was analyzed using the finite element method, and optimization processes were implemented using MATLAB. In order to obtain weight optimization, the self-adaptive enhanced vibration particle system (SA-EVPS) is compared with the EVPS algorithm.
A. Kaveh, A. Zaerreza, J. Zaerreza,
Volume 13, Issue 2 (4-2023)
Abstract
Vibrating particles system (VPS) is a swarm intelligence-based optimizer inspired by free vibration with a single degree of freedom systems. VPS is one of the well-known algorithms in structural optimization problems. However, its performance can be improved to find a better solution. This study introduces an improved version of the VPS using the statistical regeneration mechanism for the optimal design of the structures with discrete variables. The improved version is named VPS-SRM, and its efficiency is tested in the three real-size optimization problems. The optimization results reveal the capability and robustness of the VPS-SRM for the optimal design of the structures with discrete sizing variables.
M. Ramezani, M. R. Mohammadizadeh, S. Shojaee,
Volume 13, Issue 2 (4-2023)
Abstract
In recent years, there has been a lot of interest in the development and deployment of control methods that use different components of the building to mitigate the seismic response of the structure. Meanwhile, the building facade, as a non-structural component, can be a suitable alternative in affecting the structure's behavior because of its role as an envelope of the building with a significant weight. Among the modular cladding systems, the Double Skin Facade (DSF) can be considered a passive system due to the distance of the exterior layer from the main structure and sufficient continuity and rigidity. In this study, DSF systems are used as Peripheral Mass Dampers (PMDs) that control structural movements by dissipating energy during strong motions. The PMD system provides a building with several inherent dampers without the need for extra mass. To show the reliability and efficiency of the proposed approach, the PMD model is investigated and compared with results available in uncontrolled and Tuned Mass Damper (TMD) models. The PMD model is examined in three structural frames with 10, 20, and 30 stories with the extreme Mass Ratios (MRs) of 5% to 20%. The Particle Swarm Optimization (PSO) is performed on damper parameters of PMD and TMD systems to minimize structural responses. The results demonstrate that an optimal PMD system with multiple inherent mass dampers outperforms a single TMD system.
F. Damghani , S. M. Tavakkoli,
Volume 13, Issue 2 (4-2023)
Abstract
An efficient method is proposed by using time domain responses and topology optimization to identify the location and severity of damages in two-dimensional structures under plane stress assumption. Damage is assumed in the form of material density reduction in the finite element model of the structure. The time domain responses utilized here, are the nodal accelerations measured at certain points of the structure. The responses are obtained by the Newmark method and contaminated with uniformly random noise in order to simulate real conditions. Damage indicators are extracted from the time domain responses by using Singular Value Decomposition (SVD). The problem of damage detection is presented as a topology optimization problem and the Solid Isotropic Material with Penalization (SIMP) method is used for appropriate damage modeling. The objective function is formed based on the difference of singular values of the Hankel matrix for responses of real structure and the analytical model. In order to evaluate the correctness of the proposed method, some numerical examples are examined. The results indicate efficiency of the proposed method in structural damage detection and its parameters such as resampling length in SVD, penalty factor in the SIMP method and number and location of sensors are effective parameters for improving the results.
P. Zakian,
Volume 13, Issue 3 (7-2023)
Abstract
In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a typical objective function under the material volume fraction constraint. Also, the adjoint method is employed for the sensitivity analysis evaluated in terms of spatial and time discretization. The ground structures are 2D continua taking the main structural components (columns and beams) as passive regions (solid) to render planar frames with additional components. Hence, building frames with different aspect ratios are considered to assess the usefulness of the additional structural components when applying the earthquake ground motions. Furthermore, final results are obtained for different ground motions to investigate the effects of ground motion variability on the optimized topologies.
M. Mohebbi, S. Bakhshinezhad,
Volume 13, Issue 3 (7-2023)
Abstract
The semi-active bracing system locks or unlocks the stand-by braces in an on-off mode utilizing a variable stiffness device (VSD). In this paper, the optimal design of a semi-active bracing mechanism and evaluating its performance in mitigating structural vibration under seismic loading have been studied. The optimal stiffness values of the semi-active braces have been determined by solving two optimization problems including minimizing the maximum acceleration and also minimizing the maximum inter-story drift by imposing a constraint on the maximum acceleration. The genetic algorithm (GA) has been applied to solve the optimization problems. To illustrate the design procedure, an eight-story linear shear frame under earthquake record has been considered and the optimal semi-active braces have been designed. In addition, to assess the performance of optimal bracing system under other records which are different from design record in terms of intensity and frequency content, the structure equipped with optimally designed semi-active braces has been tested under several ground motion records. The results show that the optimal semi-active bracing system has simultaneously reduced different responses of the structure although the acceleration reduction has mainly been less compared to the drift reduction.
A. Kaveh, A. Zaerreza,
Volume 13, Issue 3 (7-2023)
Abstract
In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 3 (7-2023)
Abstract
Cement, water, fine aggregates, and coarse aggregates are combined to produce concrete, which is the most common substance after water and has a distinctly compressive strength, the most important quality indicator. Hardened concrete's compressive strength is one of its most important properties. The compressive strength of concrete allows us to determine a wide range of concrete properties based on this characteristic, including tensile strength, shear strength, specific weight, durability, erosion resistance, sulfate resistance, and others. Increasing concrete's compressive strength solely by modifying aggregate characteristics and without affecting water and cement content is a challenge in the direction of concrete production. Artificial neural networks (ANNs) can be used to reduce laboratory work and predict concrete's compressive strength. Metaheuristic algorithms can be applied to ANN in an efficient and targeted manner, since they are intelligent systems capable of solving a wide range of problems. This study proposes new samples using the Taguchi method and tests them in the laboratory. Following the training of an ANN with the obtained results, the highest compressive strength is calculated using the EVPS and SA-EVPS algorithms.
S. Gholizadeh, C. Gheyratmand , N. Razavi,
Volume 13, Issue 3 (7-2023)
Abstract
The main objective of this study is to optimize reinforced concrete (RC) frames in the framework of performance-based design using metaheuristics. Three improved and efficient metaheuristics are employed in this work, namely, improved multi-verse (IMV), improved black hole (IBH) and modified newton metaheuristic algorithm (MNMA). These metaheuristic algorithms are applied for performance-based design optimization of 6- and 12-story planar RC frames. The seismic response of the structures is evaluated using pushover analysis during the optimization process. The obtained results show that the IBH outperforms the other algorithms.
A. Kaveh, S. Rezazadeh Ardebili,
Volume 13, Issue 3 (7-2023)
Abstract
This paper deals with the optimum design of the mixed structures that consists of two parts, a lower part made of concrete and an upper part made of steel. Current codes and available commercial software packages do not provide analytical solutions for such structural systems, especially if a decoupled analysis is performed where the lower part is excited by ground motion and its response of total accelerations is used for the upper part. Due to irregular damping ratios, mass and stiffness, dynamic response of each part of a mixed structure differs significantly. The present paper aims at comparing of the optimum design of these structures under the coupled and decoupled models. Toward that goal, the coupled and decoupled time history analyses are performed and the optimum design of the two methods are compared. The results of the two approach show that the cost of the decoupled analysis is higher than the cost of the coupled analysis and the design of the decoupled method may be uneconomical, because the interaction between the two upper and lower parts is neglected.
A. Fatholahi, S. Sadat Sajadieh, R. Kamgar, R. Rohani Sarvestani, R. Alipour,
Volume 13, Issue 3 (7-2023)
Abstract
Improving the quality of open spaces and human comfort is necessary for more human-inaccessible spaces. Therefore, bus stations as open spaces for traveling thousands of people continuously are considered essential in absorbing sun rays and providing comfort. This paper investigates the performance of BRT stations in Tehran province in the summer, considering the highest shading. The second stage proposes a new graphic cable-stayed roof to compare the sun's path and shade. Ten stations of Moein-Tajrish terminals with South-North orientation were selected in this regard. Then, all the station details were calculated and analyzed in the Grasshopper Modeling Software. And the shadow and sunlight were evaluated and analyzed during the summer months between 12 am to 2 pm at noon. In order to evaluate the compatibility of the selected samples, three variables, including orientation, the height of the awning, and the slope of the awning, were considered orientation of 5, the height of 1, and the gradient of 19 introduced as the most optimal model. Also, studies and analyses were carried out in Honey Bee & Ladybug plugins, including Qualitative Analysis, Hourly Quantitative Analysis, and Energy Quantitative Analysis. The results showed that the selected case sample is more than 55% in the desired shading. The second stage proposes a new graphic cable-stayed roof to compare the sun's path and shade for the structure.
D. Sedaghat Shayegan, A. Amirkardoust,
Volume 13, Issue 3 (7-2023)
Abstract
In this article, spectral matching of ground motions is presented via the Mouth Brooding Fish (MBF) algorithm that is recently developed. It is based on mouth brooding fish life cycle. This algorithm utilizes the movements of the mouth brooding fish and their children’s struggle for survival as a pattern to find the best possible answer. For this purpose, wavelet transform is used to decompose the original ground motions to several levels and then each level is multiplied by a variable. Subsequently, this algorithm is employed to determine the variables and wavelet transform modifies the recorded accelerograms until the response spectrum gets close to a specified design spectrum. The performance of this algorithm is investigated through a numerical example and also it is compared with CBO and ECBO algorithms. The numerical results indicate that the MBF algorithm can to construct very promising results and has merits in solving challenging optimization problems.
M. Shahrouzi, S.-Sh. Emamzadeh, Y. Naserifar,
Volume 13, Issue 4 (10-2023)
Abstract
Shape optimization of a double-curved dam is formulated using control points for interpolation functions. Every design vector is decoded into the integrated water-dam-foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm algorithm with ant colony optimization and simulated annealing. The best experiences of the search agents are indirectly shared via pheromone trail deposited on a bi-partite characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in simulated annealing. The proposed method earned the first rank in comparison with six well-known meta‑heuristic algorithms in solving benchmark test functions. It captured the optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21% reduced concrete volume with respect to the common USBR design practice and 16% better than the particle swarm optimizer. Such an optimal design was also superior to the others in stress redistribution for better performance of the dam system.
G. Sedghi, S. Gholizadeh, S. Tariverdilo ,
Volume 13, Issue 4 (10-2023)
Abstract
In this paper an enhanced ant colony optimization algorithm with a direct constraints handling strategy is proposed for the optimization of reinforced concrete frames. The construction cost of reinforced concrete frames is considered as the objective function, which should be minimized subject to geometrical and behavioral strength constraints. For this purpose, a new probabilistic function is added to the ant colony optimization algorithm to directly satisfy the geometrical constraints. Furthermore, the position of an ant in each iteration is updated if a better solution is found in terms of objective value and behavioral strength constraints satisfaction. Five benchmark design examples of planar reinforced concrete frames are presented to illustrate the efficiency of the proposed algorithm.
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 4 (10-2023)
Abstract
In this study, experimental and computational approaches are used in order to develop and optimize self-compacting concrete mixes (Artificial neural network, EVPS metaheuristic algorithm, Taguchi method). Initially, ten basic mix designs were tested, and an artificial neural network was trained to predict the properties of these mixes. The network was then used to generate ten optimized mixes using the EVPS algorithm. Three mixes with the highest compressive strength were selected, and additional tests were conducted using the Taguchi approach. Inputting these results, along with the initial mix designs, into a second trained neural network, 10 new mix designs were tested using the network. Two of these mixes did not meet the requirements for self-compacting concrete, specifically in the U-box test. However, the predicted compressive strength results showed excellent agreement with low error percentages compared to the laboratory results, which indicates the effectiveness of the artificial neural network in predicting concrete properties, thus indicating that self-compacting concrete properties can be predicted with reasonable accuracy. The paper emphasizes the reliability and cost-effectiveness of artificial neural networks in predicting concrete properties. The study highlights the importance of providing diverse and abundant training data to improve the accuracy of predictions. The results demonstrate that neural networks can serve as valuable tools for predicting concrete characteristics, saving time and resources in the process. Overall, the research provides insights into the development of self-compacting concrete mixes and highlights the effectiveness of computational approaches in optimizing concrete performance.