Showing 84 results for Kaveh
A. Kaveh, A. Zolghadr,
Volume 6, Issue 4 (10-2016)
Abstract
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other based on the quality of the solutions they represent. The competing teams move to their new positions according to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that considers the qualities of both of the interacting solutions. TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.
A. Kaveh, F. Shokohi , B. Ahmadi,
Volume 7, Issue 2 (3-2017)
Abstract
In this study, the recently developed method, Tug of War Optimization (TWO), is employed for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Tug of War Optimization algorithm. Design and cost optimization of WDSs are performed simultaneous with analysis process using an objective function in order to satisfying the analysis criteria, design constraints and cost optimization. A number of practical examples of WDSs are selected to demonstrate the efficiency of the presented algorithm. The findings of this study clearly signify the efficiency of the TWO algorithm in reducing the water distribution networks construction cost.
A. Kaveh, M. Ilchi Ghazaan,
Volume 7, Issue 3 (7-2017)
Abstract
In this paper, MATLAB code for a recently developed meta-heuristic methodology, the vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based algorithm which simulates a free vibration of single degree of freedom systems with viscous damping. The particles gradually approach to their equilibrium positions that are achieved from current population and historically best position. Two truss towers with 942 and 2386 elements are examined for the validity of the present algorithm; however, the performance VPS has already been proven through truss and frame design optimization problems.
A. Kaveh, Y. Vazirinia,
Volume 7, Issue 3 (7-2017)
Abstract
Tower cranes are major and expensive equipment that are extensively used at building construction projects and harbors for lifting heavy objects to demand points. The tower crane locating problem to position a tower crane and supply points in a building construction site for supplying all requests in minimum time, has been raised from more than twenty years ago. This problem has already been solved by linear programming, but meta-heuristic methods spend less time to solving the problem. Hence, in this paper three newly developed meta-heuristic algorithms called CBO, ECBO, and VPS have been used to solve the tower crane locating problem. Three scenarios are studied to show the applicability and performance of these meta-heuristics.
A. Kaveh, A. Dadras,
Volume 7, Issue 4 (10-2017)
Abstract
In this paper a Guided Tabu Search (GTS) is utilized for optimal nodal ordering of finite element models (FEMs) leading to small profile for the stiffness matrices of the models. The search strategy is accelerated and a graph-theoretical approach is used as guidance. The method is evaluated by minimization of graph matrices pattern equivalent to stiffness matrices of finite element models. Comparison of the results with those of some powerful methods, confirms the robustness of the algorithm.
S.m.h. Sharifi, M. Kaveh, H. Saeidi Googarchin,
Volume 7, Issue 4 (10-2017)
Abstract
Offshore pipelines are an effective tool for transportation of oil and gas which are usually assembled by the use of girth welds. Since flaws may naturally exist at such welds, fracture assessment of girth welded offshore pipelines is substantial. Current fracture assessment procedures like BS 7910 consider identical material properties for the weld and the base metals. However the strength difference between weld and base materials has significant effect on fracture assessment results. This effect is magnified greatly for pipelines which are operated in deep waters and are subjected to large plastic loads. In this paper 3D nonlinear elastic-plastic finite element analyses using the ABAQUS software are performed in order to investigate the effect of weld mismatching at various crack geometries on fracture assessment of pipeline’s girth weld. It is noteworthy that such a quantitative study on the effect of weld mismatching condition at different crack geometries on ECA analysis has not been performed so far. Based on simulation performed, a new optimized formula is proposed for fracture analysis of girth welded pipeline with surface cracks considering the effect of weld mismatching conditions at plastic strains. The results show that comparison of proposed formula results with those available experimental data reveals a great agreement. Furthermore, it is observed that the effect of strength difference between the base and the weld materials is insignificant for short cracks whereas mismatching plays a more dominating role in long cracks. Also, with increasing the crack heights the effect of weld mismatching raises meaningfully. In addition, ECA analysis results with and without weld mismatching effect are compared.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 2 (8-2018)
Abstract
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying surface, relative humidity, cement content, the ratio between water and cement contents, the ratio of sand on total aggregate, average compressive strength at 28 days, and modulus of elasticity at 28 days are included in the developing process of MARS model. The performance of MARS model is compared with several codes of practice including ACI, B3, CEB MC90-99, and GL2000. The results confirmed the superior capability of developed MARS model over existing design codes. Furthermore, the robustness of the developed model is also verified through sensitivity and parametric analyses.
A. Kaveh, A. Dadras,
Volume 8, Issue 2 (8-2018)
Abstract
In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the corresponding graph, and k-median approach is employed. The performance of these methods is investigated through four FE models with different topology and number of meshes. A comparison of the numerical results using different algorithms indicates, in most cases the BBO is capable of performing better or identical using less time with equal computational effort.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract
Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.
A. Kaveh, M.r. Seddighian, E. Ghanadpour,
Volume 9, Issue 3 (6-2019)
Abstract
Despite widespread application of grillage structures in many engineering fields such as civil, architecture, mechanics, their analysis and design make them more complex than other type of skeletal structures. This intricacy becomes more laborious when the corresponding
analysis and design are based on plastic concepts.
In this paper, Finite Element Method is utilized to find the lower and the upper bounds solutions of rectangular planner grids and this method is compared with analogues Finite Difference Method to indicate the efficiency of proposed approach.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 1 (1-2020)
Abstract
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
A. Kaveh, R. A. Izadifard, L. Mottaghi,
Volume 10, Issue 1 (1-2020)
Abstract
In structural design, either the experience of designer is used or a uniform grouping is usually utilized to group the elements. This type of grouping affects the fundamental cost of the buildings, including the cost of concrete, steel and formwork, as well as secondary costs such as laboratory, checking, fabrication and etc. However, the secondary costs are not usually considered in the cost function. Strategies can also be used to automate the grouping of members in structural design. In this strategy beams and columns are automatically grouped into a limited number of groups to achieve the lowest cost. In this study, enhanced colliding bodies optimization algorithm is used to automatically group the beams and columns of the reinforced concrete structures and also to optimize their cost. The proposed procedure applied to three reinforced concrete frames with four, eight and twelve stories and the influence of automatic grouping of the members in optimal cost is investigated. Using this method, the beams and columns are automatically grouped and the results show that the optimal cost obtained from the automatic grouping is less than the manual grouping of the members.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini, H. Abedini,
Volume 10, Issue 3 (6-2020)
Abstract
In this research, a new objective function has been proposed for optimal design of the Buckling Restrained Braced Frames (BRBFs) is performed using nonlinear time history analysis. The BRBF is a particular type of bracing system that has been widely utilized in recent years. The nonlinear time history analysis also provides a detailed view of the behavior of the structure. The purpose of this study is to provide an optimal design based on minimizing the weight of the structure while increasing the energy dissipation capability of the structure. Due to the complexity of the problem, the Enhanced Vibrating Particles Systems (EVPS) meta-heuristic algorithm is used to perform the optimization. Here, a 3-story frame, a 6-story frame and a 9-story frame are investigated simultaneously considering the continuous and discrete optimization.
A. Kaveh, M. R. Seddighian, H. Sadeghi, S. Sadat Naseri,
Volume 10, Issue 4 (10-2020)
Abstract
One of the most crucial problems in geo-engineering is the instability of unsaturated slopes, causing severe loss of life and property worldwide. In this study, five novel meta-heuristic methods are employed to optimize locating the Critical Failure Surface (CFS) and corresponding Factor of Safety (FOS). A Finite Element Method (FEM) code is incorporated to convert the strong form of the Richard’s differential equation to the weak form. More importantly, the derived code can consider both the seismic and seepage conditions additional to the static loading. Eventually, the proposed optimization procedure is validated against benchmark examples and some insights are provided.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 4 (10-2020)
Abstract
In this paper, set theoretical variants of the artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are designed based on a set theoretical framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. The framework aims to improve the compromise between diversification and intensification of the search and makes it possible to design various variants of a P-metaheuristic. In order to verify the stability and robustness of the set theoretical framework, the proposed algorithms are applied to solve three different benchmark structural design optimization problems. The results show that the set theoretical framework improves the performance of the ABC and WEO algorithms, especially in terms of robustness and convergence characteristics.
S. R. Hoseini Vaez, P. Hosseini, M. A. Fathali, A. Asaad Samani, A. Kaveh,
Volume 10, Issue 4 (10-2020)
Abstract
Nowadays, the optimal design of structures based on reliability has been converted to an active topic in structural engineering. The Reliability-Based Design Optimization (RBDO) methods provide the structural design with lower cost and more safety, simultaneously. In this study, the optimal design based on reliability of dome truss structures with probability constraint of the frequency limitation is discussed. To solve the RBDO problem, nested double-loop method is considered; one of the loops performs the optimization process and the other one assesses the reliability of the structure. The optimization process is implemented using ECBO and EVPS algorithms and the reliability index is calculated using the Monte Carlo simulation method. Finally, the size and shape reliability-based optimization of 52-bar and 120-bar dome trusses has been investigated.
A. Kaveh, N. Khodadadi, S. Talatahari,
Volume 11, Issue 1 (1-2021)
Abstract
In this article, an Advanced Charged System Search (ACSS) algorithm is applied for the optimum design of steel structures. ACSS uses the idea of Opposition-based Learning and Levy flight to enhance the optimization abilities of the standard CSS. It also utilizes the information of the position of each charged particle in the subsequent search process to increase the convergence speed. The objective function is to find a minimum weight by choosing suitable sections subjected to strength and displacement requirements specified by the American Institute of Steel Construction (AISC) standard subject to the loads defined by Load Resistance Factor Design (LRFD). To show the performance of the ACSS,
four steel structures with different number of elements are optimized. The results, efficiency, and accuracy of the ACSS algorithm are compared to other meta-heuristic algorithms. The results show the superiority of the ACSS compared to the other considered algorithms.