Showing 84 results for Kaveh
A. Kaveh, A. Zaerreza,
Volume 13, Issue 4 (10-2023)
Abstract
This paper presents the chaotic variants of the particle swarm optimization-statistical regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the performance of the PSO-SRM. These maps are utilized instead of the random number, which defines the solution generation method. The robustness and performance of these methods are tested in the three steel frame design problems, including the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization results reveal that the applied chaotic maps improve the performance of the PSO-SRM.
P. Hosseini, A. Kaveh, A. Naghian, A. Abedi,
Volume 14, Issue 2 (2-2024)
Abstract
The global population growth and the subsequent surge in housing demand have inevitably led to an increase in the demand for concrete, and consequently, cement. This has posed environmental challenges, as cement factories are significant contributors to carbon dioxide emissions. One promising solution is to incorporate pozzolanic materials into concrete production. This study investigates the effects of using travertine sludge as a partial substitute for cement. Seven different mix designs, along with a control mix, were created and compared. The primary variable was the ratio of travertine sludge to cement weight, considered in intervals of 10%, 15%, 20%, 25%, 30%, 35%, and 40% of the cement's weight. Various tests were conducted, including compressive strength and flexural strength at ages of 7, 28, and 90 days, as well as a permeability test at 28 days. The findings revealed interesting patterns. At the 7-day mark, as the percentage of travertine sludge increased, there was a decrease in compressive strength. However, by the 28-day mark, the concrete displayed a varied behavior: using up to 30% travertine sludge by weight reduced the strength, but exceeding 30% resulted in increased strength. At the 90-day mark, an overall increase in strength was observed with the rise in travertine sludge percentage. Such pozzolanic effects on compressive strength were somewhat predictable. Additionally, based on the flexural strength tests, travertine sludge can be deemed a viable substitute for a certain percentage of cement by weight. This research underscores the potential of sustainable alternatives in the construction industry, promoting both professional development and personal branding for those engaged in eco-friendly practices.
Dr V.r. Mahdavi, Prof. A. Kaveh,
Volume 14, Issue 3 (6-2024)
Abstract
In order to evaluate the damage state, value, and position of structural members more accurately, a multi-objective optimization (MO) method is utilized that is based on changes in natural frequency. The multi-objective optimization dynamic-based damage detection method is first introduced. Two objective functions for optimization are then introduced in terms of changing the natural frequencies and mode shapes. The multi-objective optimization problem (MOP) is formulated by using the two objective functions. Three considered MO algorithms consist of Colliding Bodies Optimization (MOCBO), Particle Swarm Optimization (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) to achieve the best structural damage detection. The proposed methods are then applied to three planar steel frame structures. Compared to the traditional optimization methods utilizing the single-objective optimization (SO) algorithms, the presented methods provide superior results.
P. Hosseini, A. Kaveh, A. Naghian, A. Abedi,
Volume 14, Issue 3 (6-2024)
Abstract
This study aimed to develop and optimize artificial stone mix designs incorporating microsilica using artificial neural networks (ANNs) and metaheuristic optimization algorithms. Initially, 10 base mix designs were prepared and tested based on previous experience and literature. The test results were used to train an ANN model. The trained ANN was then optimized using SA-EVPS and EVPS algorithms to maximize 28-day compressive strength, with aggregate gradation as the optimization variable. The optimized mixes were produced and tested experimentally, revealing some discrepancies with the ANN predictions. The ANN was retrained using the original and new experimental data, and the optimization process was repeated iteratively until an acceptable agreement was achieved between predicted and measured strengths. This approach demonstrates the potential of combining ANNs and metaheuristic algorithms to efficiently optimize artificial stone mix designs, reducing the need for extensive physical testing.