Search published articles


Showing 24 results for Building

M. Shahrouzi,
Volume 1, Issue 1 (3-2011)
Abstract

Earthquake time history records are required to perform dynamic nonlinear analyses. In order to provide a suitable set of such records, they are scaled to match a target spectrum as introduced in the well-known design codes. Corresponding scaling factors are taken similar in practice however, optimizing them reduces extra-ordinary economic charge for the seismic design. In the present work a new hybrid meta-heuristic is developed combining key features from genotypic search and particle swarm optimization. The method is applied to an illustrative example via a parametric study to evaluate its effectiveness and less probability of premature convergence compared with the standard particle swarm optimization.
M.a. Youssef , I.a. Mohammed, A.n. Ibraheem, I.m. Hussein,
Volume 2, Issue 1 (3-2012)
Abstract

General Authority for Educational Buildings (GAEB) in Egypt is responsible for new construction and maintenance of the educational building [1]. According to the Sixth Five- Years Plan in Egypt, the program of educational structures includes new construction of about 2915 schools, with 39.8 thousand classes. Also, maintenance works for buildings about 1250 schools. These works needs a high budget but the available budget is less than the required budget. Therefore, GAEB should apply optimization techniqes to save cost and optimize the benefit from the avaliable budget with the same quality level or more. This paper aims to apply value engineering technique on educational building to maximuize the utiltization of the available constructuion and maintenace budget. In this paper value engineering technique, is applied on a model of primary school. The paper suggested that GAEB should construct a value engineering department included in its organization structure. Finally it draws overall conclusions about the application of value engineering (VE) in the GAEB in Egypt. Also, to get the optimum set of activities, alternatives for cost saving and maximize the utilization of the available funds for new construction and maintenance works. The value engineering technique application is based on data collected from GAEB.
A. Abdelraheem Farghaly,
Volume 2, Issue 4 (10-2012)
Abstract

High tall buildings are more susceptible to dynamic excitations such as wind and seismic excitations. In this paper, design procedure and some current applications of tuned mass damper (TMD) were studied. TMD was proposed to study response of 20 storey height building to seismic excitations using time history analysis with and without the TMD. The study indicates that the response of structures such as storey displacements and shear force of columns can be dramatically reduced by using TMD groups with specific arrangement in the model. The study illustrates the group of four TMDs distributed on the plane can be effective as reinforced concrete core shear wall.
M. Taheri, A. Mahdavi,
Volume 4, Issue 2 (6-2014)
Abstract

Building performance simulation is being increasingly deployed beyond the building design phase to support efficient building operation. Specifically, the predictive feature of the simulation-assisted building systems control strategy provides distinct advantages in view of building systems with high latency and inertia. Such advantages can be exploited only if model predictions can be relied upon. Hence, it is important to calibrate simulation models based on monitored data. In the present paper, we report on the use of optimization-aided model calibration in the context of an existing university building. Thereby, our main objective is to deploy data obtained via the monitoring system to both populate the initial simulation model and to maintain its fidelity through an ongoing optimization-based calibration process. The results suggest that the calibration can significantly improve the predictive performance of the thermal simulation model.
M. Shahrouzi , A. Mohammadi,
Volume 4, Issue 3 (9-2014)
Abstract

Dynamic structural responses via time history analysis are highly dependent to characteristics of selected records as the seismic excitation. Ground motion scaling is a well-known solution to reduce such a dependency and increase reliability to the dynamic results. The present work, formulate a twofold problem for optimal spectral matching and performing consequent sizing optimization based on such scaled ground motion via numerical step-by-step analyses. Particle swarm optimization as a widely used meta-heuristic is specialized and improved to solve this problem treating a number of examples. The scaling error is evaluated using both traditional procedure and the developed method. In this regard, some issues are studied including the effect of structural period and shape of the design spectrum on the results. Contribution of the proposed enhancement on the standard particle swarm intelligence has improved its explorative capability resulting in higher efficiency of the algorithm.
D. Meskó,
Volume 4, Issue 4 (11-2014)
Abstract

During the planning phase of modern, complex, block-structured, large-area located, but still landscape-harmonized health-care buildings, the key is the optimal positioning of the blocks and functions, simultaneously ensuring the most-effective backup-paths for any transportation route failure in the buildings in order to speed up system operation, reduce maintenance costs and especially to improve patient safety and satisfaction. The importance of improving reliability and boundary conditions of the modelling in modern complex health-care building-systems are emphasized. A cost efficient pre-phase solution of mathematical, graph modelling is presented, with introducing link doubling to linearize a two segment, non-linear capacity-cost function. The developed and detailed mathematical graph model can be used as part of the architectural planning workflow. This model allows distinguishing the sharable part from the free part of capacity on a link in case of simultaneously routing multiple protection paths. Link doubling allows finding optimal routing of shared protection paths for failure cases. Two algorithms are proposed for routing of the guaranteed bandwidth pipes with shared protection which provides reliable building structures through thrifty additional resources. It is assumed that a single working path can be protected by one or multiple protection paths, which are partially or fully disjoint from the working one. This approach allows better capacity sharing among protection paths. The main aim of the recommendations is to achieve a reliable, fully operational building even if a failure, a reconditioning or emergency situation happens.
M. Shahrouzi, A. Meshkat-Dini , A. Azizi,
Volume 5, Issue 2 (3-2015)
Abstract

Practical design of tall frame-tube and diagrids are formulated as two discrete optimization problems searching for minimal weight undercodified constraints under gravitational and wind loading due to Iranian codes of practice for steel structures (Part 6 & Part 10). Particular encoding of design vector is proposed to efficiently handle both problems leading to minimal search space. Two types of modeling are employed for the sizing problem one by rigid floors without rotational degrees of freedom and the other with both translational and rotational degrees of freedom. The optimal layout of diagrids using rigid model is searched as the second problem. Then performance of Mine Blast Optimization as a recent meta-heuristic is evaluated in these problems treating a number of three-dimensional structural models via comparative study with the common Harmony Search and Particle Swarm Optimization. Considerable benefit in material cost minimization is obtained by these algorithms using tuned parameters. Consequently, effectiveness of HS is observed less than the other two while MBO has shown considerable convergence rate and particle swarm optimiztion is found more trustable in global search of the second problem.
R. Kamgar , R. Rahgozar,
Volume 5, Issue 4 (7-2015)
Abstract

In this paper, based on maximizing the outrigger-belt truss system’s strain energy, a methodology for determining the optimum location of a flexible outrigger system is presented. Tall building structures with combined systems of framed tube, shear core, belt truss and outrigger system are modeled using continuum approach. In this approach, the framed tube system is modeled as a cantilevered beam with box cross section. The effect of outrigger and shear core systems on framed tube’s response under lateral loading is modeled by a rotational spring placed at the location of belt truss and outrigger system. Optimum location of this spring is obtained when energy absorbed by the spring is maximized. For this purpose, first derivative of the energy equation with respect to spring location as measured from base of the structure, is set to zero. Optimum location for outrigger and belt truss system is calculated for three types of lateral loadings, i.e. uniformly and triangularly distributed loads along structure’s height, and concentrated load at top of the structure. Accuracy of the proposed method is verified through numerical examples. The results show that the proposed method is reasonably accurate. In addition, for different stiffness of shear core and outrigger system, several figures are presented that can be used to determine the optimum location of belt truss and outrigger system.
Ch.ch. Mitropoulou , N.d. Lagaros,
Volume 6, Issue 1 (1-2016)
Abstract

One of the main tasks of engineers is to design structural systems light and economic as possible, yet resistant enough to withstand all possible loads arising during their service life and to absorb the induced seismic energy in a controlled and predictable fashion. The traditional trial-and-error design approach is not capable to determine an economical design satisfying also the code requirements. Structural design optimization, on the other hand, provides a numerical procedure that can replace the traditional design approach with an automated one. The objective of this work is to propose a performance-based seismic design procedure, formulated as a structural design optimization problem, for designing steel and steel-concrete composite buildings subject to interstorey drift limitations. In particular a straightforward design procedure is proposed where the influence on both record and incident angle is considered. For this purpose six test examples are considered, in particular three steel and three steel-concrete composite buildings are optimally designed for minimum initial cost.
A. Choubey, M. D. Goel,
Volume 6, Issue 2 (6-2016)
Abstract

The  study  aims  to  investigate  the  progressive  collapse  behaviour  of  RCC  building  under extreme  loading  events  such  as  gas  explosion  in  kitchen,  terroristic  attack,  vehicular collisions  and  accidental  overloads.  The  behavioural  changes  have  been  investigated  and node displacements  are computed when the building is subjected to sudden collapse of the 
load bearing elements.  Herein, a RCC  building  designed based on Indian standard code of practice  is  considered.  The  investigation  is  carried  out  using  commercially  available software. The node displacement values are found under the column removal conditions and collapse  resistance  of  building  frame  is  studied  due  to  increased  loading  for  different 
scenarios.  This  simple analysis  can be used to quickly analyse the  structures  for  different failure conditions and then optimize it for various threat scenarios.


S. Chakraverty , D. M. Sahoo,
Volume 6, Issue 3 (9-2016)
Abstract

Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be obtained exactly at each time step, rather those may be with error. So those records at each time step are assumed here as intervals. Then using those interval acceleration data, the structural responses are found. The primary background for the present study is to model Interval Artificial Neural Network (IANN) and to compute structural response of a structural system by training the model for Indian earthquakes at Chamoli and Uttarkashi using interval ground motion data. The neural network is first trained here for real interval earthquake data. The trained IANN architecture is then used to simulate earthquakes by feeding various intensities and it is found that the predicted responses given by IANN model are good for practical purposes. The above may give an idea about the safety of the structural system in case of future earthquakes. Present paper demonstrates the procedure for simple case of a simple shear structure but the procedure may easily be generalized for higher storey structures as well.


Mehmet E Uz, P. Sharafi,
Volume 6, Issue 4 (10-2016)
Abstract

This study investigates the efficacy of optimal semi-active dampers for achieving the best results in seismic response mitigation of adjacent buildings connected to each other by magnetorheological (MR) dampers under earthquakes. One of the challenges in the application of this study is to develop an effective optimal control strategy that can fully utilize the capabilities of the MR dampers. Hence, a SIMULINK block in MATLAB program was developed to compute the desired control forces at each floor level and to the obtain number of dampers. Linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers are used for obtaining the desired control forces, while the desired voltage is calculated based on clipped voltage law (CVL). The control objective is to minimize both the maximum displacement and acceleration responses of the structure. As a result, MR dampers can provide significant displacement response control that is possible with less voltage for the shorter building.


P. Sharafi, M. Askarian, M. E. Uz, H. Abaci,
Volume 7, Issue 1 (1-2017)
Abstract

Preliminary layout design of buildings has a substantial effect on the ultimate design of structural components and accordingly influences the construction cost. Exploring structurally efficient forms and shapes during the conceptual design stage of a project can also facilitate the optimum integrated design of buildings. This paper presents an automated method of determining column layout design of rectilinear orthogonal building frames using Charged System Search (CSS) algorithm. The layout design problem is presented as a combinatorial optimization problem named multi-dimensional knapsack problem by setting some constraints to the problem, where the minimum cost and maximum plan regularity are the objectives. The efficiency and robustness of CSS to solve the combinatorial optimization problem are demonstrated through a numerical design problem. The results of the algorithm are compared to those of an ant colony algorithm in order to validate the solution.


R. Ghousi, M. Khanzadi, K. Mohammadi Atashgah,
Volume 8, Issue 3 (10-2018)
Abstract

Construction industry has the highest ratio of fatality of workers in comparison with other industries. Construction safety has been always a matter of focus to control safety risks. This article presents a new flexible method of safety risk assessment by adding Hybrid Value Number (HVN) to the assessment equation. As a result of using this method, the results of assessment process will be more consistent with the project’s conditions, as well as being more trustful. It could provide a better perspective of safety risks for project managers. The most significant outcomes of this research are as follows: 1) the most influential factors which affect safety risks in building construction projects are "the proficiency and the experience of workers", "the complexity of construction technology" and "time limitation", 2) the biggest risk priority numbers belong to "Struck by falling objects" and "Falling to lower levels" hazards, 3)a necessary safety program must contain Personal Protective Equipment (PPE), safety measures and safety training, 4)Project managers can decrease 75% of total safety risks by investing less than 1.5% of construction budget on safety programs.
S. M. Hatefi,
Volume 9, Issue 1 (1-2019)
Abstract

Intelligent building (IB) technologies have widespread applications in the building design and development. In this regard, it is necessary to develop intelligent building assessment models in order to satisfy the clients, professionals, and occupants' growing demands. To this end, this paper proposes an integrated analytic hierarchy process (AHP) and preference degree approach (PDA) under the fuzzy environment for the purpose of intelligent building assessment. Fuzzy AHP is employed to determine the local weights of performance criteria and the final weights of the intelligent building alternatives. Since, the final weights of intelligent buildings (IBs) are in the form of fuzzy numbers, fuzzy PDA is utilized to prioritize the intelligent buildings. Finally, fuzzy AHP-fuzzy PDA is proposed to assess the performance of five intelligent building alternatives in Isfahan, Iran.
M. Shahrouzi, A. Barzigar, D. Rezazadeh,
Volume 9, Issue 3 (6-2019)
Abstract

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
M. Shahrouzi, N. Khavaninzadeh , A. Jahanbakhsh,
Volume 10, Issue 2 (4-2020)
Abstract

Partricular features of overpassing local optima and providing near-optimal soultion in practical time has led researchers to apply metaheuristics in several engineering problems. Optimal design of diagrids as one of the most efficient structural systems in tall buildings has been concerned here. Jaya algorithm as a recent paramter-less optimization method is employed to solve the problem using a set of available sections. Furthermore, passive congregation is embedded in Jaya without adding any extra control parameters. Applyig the method in a number of real-size structural examples including diagrids, exhibits performance improvement by the new hybrid algorithm with respect to Jaya.
A. Shariati, R. Kamgar, R. Rahgozar,
Volume 10, Issue 3 (6-2020)
Abstract

The utilization of passive energy dissipation systems has been created a revolution in the structural engineering industry due to their advantages. Fluid Viscous Damper (FVD) is one of these control systems. It has been used in many different industries, such as the army, aerospace, bridge, and building structures. One of the essential questions about this system is how it can combine with the bracing system to enhance its abilities. In this paper, a comparison between the responses of a twelve-story steel building retrofitted by four layouts of bracings systems (i.e., chevron, diagonal, toggle, and X-brace) is studied. These bracing systems are equipped by FVD to find the optimum layout for these systems. Buildings are modeled nonlinearity and excited by an earthquake (Manjil earthquake). For this purpose, the Fast Nonlinear Analysis (FNA) is performed using the SAP2000 software. The results show that FVD alters some of the structural behaviors such as inter-story drift when combining with a chevron-bracing system. As a result, it can decrease the motion induced by the earthquake significantly. Besides, the results show that the chevron model has the best performance for the high-rise building in comparison with the other studied systems. As a result, for toggle, chevron, and diagonal bracing systems, the formation of link damper could absorb 66%, 72%, and 79% of input energy instead of modal damping energy, respectively.
M. Danesh, J. Abdolhoseyni,
Volume 11, Issue 3 (8-2021)
Abstract

Nowadays, energy crisis is one of the most important issues faced by most countries. Given the accommodation of a large population, high-rise buildings have a significant role in creating or resolving this crisis. A recent solution with regard to the optimization and reduction of energy consumption is using smart systems in buildings. In fact, with the help of modern knowledge, smart buildings consume energy in the right place and time. By transforming a simple building into a dynamic one, not only will it be able to adapt to changing environmental conditions, it will also consider the living habits of dwellers and comfort standards in order to provide maximum satisfaction. Moreover, the money spent on making smart appliances will be fully compensated after a short while, saving the overall costs and energy. This descriptive-analytical study, conducted using library resources, e-books and papers, is an attempt to examine the effect of smartization on optimizing and increasing the efficiency of high-rise buildings. The results of comprehensive surveys in various sectors related to smart buildings show that one can optimize energy consumption to take an effective step in solving global energy issues using smart systems in buildings. This study is devoted to energy consumption of smart systems employing an efficient continuous evolutionary meta-heuristic algorithm.
M. Jafari Vardanjani, M. Izadi, H. Varesi,
Volume 11, Issue 4 (11-2021)
Abstract

Optimization of public space energy consumption can basically improve the savings and the ratio of energy consumption and resources entirely. In this regard any methodology and system to shorten the redundant use of energy in different spots of the public space and to distribute energy based on significance of each zone will contribute in the task. This study has sought to develop a prototype of a multi-function smart system to monitor and control the use of energy in a space in terms of temperature, brightness and ventilation based on the significance of each zone according to the traffic calculated during time periods. Although in the current prototype there has not yet been photovoltaics embedded in the device, it has been accounted for in software section.
The monitoring system performs to monitor and store temperature, light intensity, CO2 concentration, and traffic at each zone while control system acts based on the zone significance and mechanism used in each energy consuming device including heaters, coolers, lights, etc. Findings on pilot scale shows that optimization of energy usage by such a system can drastically reduce space energy consumption while the optimal configuration of the multi-function system depends on the space conditions. Space conditions include climatic, area, etc. Although zero-energy building require further researches to be realized and utilized, this system can be perceived as first steps toward this goal.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb