A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, C. Farahmandpour,
Volume 1, Issue 3 (9-2011)
Abstract
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an optimal manner and to direct the agents toward the best regions, resulting in possible reduction of the number of particles. To show the computational advantages of the new PSO-SA method, some benchmark numerical examples are studied. The PSO-SA algorithm converges to better or at least the same solutions, while the number of structural analyses is significantly reduced
X.y. Yang, X. Huang, Y.m. Xie, Q. Li, J.h. Rong,
Volume 1, Issue 3 (9-2011)
Abstract
This paper presents the bidirectional evolutionary structural optimization (BESO) method for the design of two-phase composite materials with optimal properties of stiffness and thermal conductivity. The composite material is modelled by microstructures in a periodical base cell (PBC). The homogenization method is used to derive the effective bulk modulus and thermal conductivity. BESO procedures are presented to optimize the two individual properties and their various combinations. Three numerical examples are studied. The results agree well with those of the benchmark microstructures and the Hashin-Shtrikman (HS) bounds.
R. Kamyab, E. Salajegheh,
Volume 1, Issue 3 (9-2011)
Abstract
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number of the structural nodes and elements of scallop domes, nonlinear time history analysis of such structures is time consuming. In this study to reduce the computational burden radial basis function (RBF) neural network is utilized. The type of inputs of neural network models seriously affects the computational performance and accuracy of the network. Two types of input vectors: cross-sectional properties and natural periods of the structures can be employed for neural network training. In this paper the most influential natural periods of the structure are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are used as the input vector of the RBF network. Results of illustrative example demonstrate high performance and computational accuracy of RBF network.
F.r. Rofooei, A. Kaveh, F.m. Farahani,
Volume 1, Issue 3 (9-2011)
Abstract
Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For this purpose, a number of 2-D structural models with varying number of bays and stories are designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The seismically–induced damages to these structural models are determined by performing extensive nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the structural models. A database is generated using the level of induced damages versus different parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural networks are trained for estimation of the probable seismic damage index.
R. Greco, G.c. Marano,
Volume 1, Issue 3 (9-2011)
Abstract
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a computational alternative to many optimization problems, such as structural ones. In this study the effectiveness of a relatively new Evolutionary Algorithm, namely Differential Evolutionary, is investigated for constrained optimization. This presents many interesting advantages and so that it is a candidate to be widely used in many real structural optimization problems. The algorithm version here used has been developed by hybridizing some recent versions of Differential Evolutionary algorithms proposed in literature, and uses a specific way for dealing with constraints which, always, concern real structural optimization problems. The effectiveness of proposed approach has been demonstrated by developing two cases of study, which regard simple but very significant structural problems for steel structures, one of which is a standard benchmark in structural optimization. The analyses show the simplicity and effectiveness of the proposed approach, so that it can be suitably ready for practical uses out of academic contest.
A. Tahershamsi , R. Sheikholeslami,
Volume 1, Issue 3 (9-2011)
Abstract
In engineering, flood routing is an important technique necessary for the solution of a floodcontrol problem and for the satisfactory operation of a flood-prediction service. A simple conceptual model like the Muskingum model is very effective for the flood routing process. One challenge in application of the Muskingum model is that its parameters cannot be measured physically. In this article we proposed imperialist competitive algorithm (ICA) for optimal parameter estimation of the linear Muskingum model. This algorithm uses imperialism and imperialistic competition process as a source of inspiration. Optimization to identify Muskingum model parameters can be considered as a suitable field to investigate the efficiency of this algorithm.
S. Gholizadeh, A. Barzegar , Ch. Gheyratmand,
Volume 1, Issue 3 (9-2011)
Abstract
The main aim of the present study is to propose a modified harmony search (MHS) algorithm for size and shape optimization of structures. The standard harmony search (HS) algorithm is conceptualized using the musical process of searching for a perfect state of the harmony. It uses a stochastic random search instead of a gradient search. The proposed MHS algorithm is designed based on elitism. In fact the MHS is a multi-staged version of the HS and in each stage a new harmony memory is created using the information of the previous stages. Numerical results reveal that the proposed algorithm is a powerful optimization technique with improved exploitation characteristics compared with the standard HS.
S. Kazemzadeh Azad, O. Hasançebi, O. K. Erol,
Volume 1, Issue 3 (9-2011)
Abstract
Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers to utilize such techniques in their applications. Big- Bang Big-Crunch (BB-BC) algorithm is a simple metaheuristic optimization method emerged from the Big Bang and Big Crunch theories of the universe evolution. The present study is an attempt to evaluate the efficiency of this algorithm in solving engineering optimization problems. The performance of the algorithm is investigated through various benchmark examples that have different features. The obtained results reveal the efficiency and robustness of the BB-BC algorithm in finding promising solutions for engineering optimization problems.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)
Abstract
This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
M. Mashayekhi, J. Salajegheh, M.j. Fadaee , E. Salajegheh,
Volume 1, Issue 4 (12-2011)
Abstract
For reliability-based topology optimization (RBTO) of double layer grids, a two-stage optimization method is presented by applying “Solid Isotropic Material with Penalization” and “Ant Colony Optimization” (SIMP-ACO method). To achieve this aim, first, the structural stiffness is maximized using SIMP. Then, the characteristics of the obtained topology are used to enhance ACO through six modifications. As numerical examples, reliability-based topology designs of typical double layer grids are obtained by ACO and SIMP-ACO methods. Their numerical results reveal the effectiveness of the proposed SIMPACO method for the RBTO of double layer grids.
A. Kaveh, V.r. Mahdavi,
Volume 1, Issue 4 (12-2011)
Abstract
In recent years, the importance of economical considerations in the field of dam engineering has motivated many researchers to propose new methods for minimizing the cost of dames and in particular arch dams. This paper presents a method for shape optimization of double curvature arch dams corresponding to minimum construction cost while satisfying different constraints such as natural frequencies, stability and geometrical limitations. For optimization, the charged system search (CSS) and particle swarm optimization (PSO) are employed. To validate the finite element model, a real arch dam is considered as a test example. The results of the present method are compared to those of other optimization algorithms for the selected example from literature.
A. Afshar, E. Kalhor,
Volume 1, Issue 4 (12-2011)
Abstract
In this paper, an efficient multi-objective model is proposed to solve time-cost trade off problem considering cash flows. The proposed multi-objective meta-heuristic is based on Ant colony optimization and is called Non Dominated Archiving Ant Colony Optimization (NAACO). The significant feature of this work is consideration of uncertainties in time, cost and more importantly interest rate. A fuzzy approach is adopted to account for uncertainties. Mathematics of cash-flow analysis in a fuzzy environment is described. A case study is done using the proposed approach
A. Kaveh, M. Hassani,
Volume 1, Issue 4 (12-2011)
Abstract
In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains the formulation of the complementary energy of truss and frame structures for the purpose of linear analysis. In the second part material and geometric nonlinearity of structure is considered using Ramberg-Osgood relationships. In the last part optimal simultaneous analysis and design of structure is studied. In each part, the efficiency of the methods is illustrated by means simple examples.
A. Bagheria, G. Ghodrati Amirib, M. Khorasanib , J. Haghdoust,
Volume 1, Issue 4 (12-2011)
Abstract
The main objective of this study is to present new method on the basis of genetic algorithms for attenuation relationship determination of horizontal peak ground acceleration and spectral acceleration. The proposed method employs the optimization capabilities of genetic algorithm to determine the coefficients of attenuation relationships of peak ground and spectral accelerations. This method has been applied to 361 Iranian earthquake records with magnitudes between 4.5 and 7.4 obtained from two seismic zones, namely Zagros and Alborz-Central Iran. The obtained results indicated that the proposed method can be characterized as a powerful tool for prediction horizontal peak ground and spectral accelerations.
J. Salajegheh, S. Khosravi,
Volume 1, Issue 4 (12-2011)
Abstract
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO includes three phases. In the first phase, a preliminary optimization is accomplished using GSA as local search. In the second phase, an optimal initial swarm is produced using the optimum result of GSA. Finally, PSO is employed to find the optimum design using the optimal initial swarm. In order to reduce the computational cost of dam analysis subject to earthquake loading, weighted least squares support vector machine (WLS-SVM) is employed to accurately predict dynamic responses of gravity dams. Numerical results demonstrate the high performance of the hybrid meta-heuristic optimization for optimal shape design of concrete gravity dams. The solutions obtained by GSA-PSO are compared with those of GSA and PSO. It is revealed that GSA-PSO converges to a superior solution compared to GSA and PSO, and has a lower computation cost.
S. Shojaee, N. Valizadeh , M. Arjomand,
Volume 1, Issue 4 (12-2011)
Abstract
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the analysis model will precisely demonstrate the geometry of structure. In this study Particle Swarm Optimization (PSO) is used for Isogeometric shape optimization. The option of selecting the position and weight of control points as design variables, needless to sensitivity analysis relationships, is the superiority of the proposed method over gradient-based methods. The other advantages of this method are its straightforward implementation
A. Kaveh, T. Bakhshpoori, M. Ashoory,
Volume 2, Issue 1 (3-2012)
Abstract
Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.
S. Adarsh,
Volume 2, Issue 1 (3-2012)
Abstract
To ensure efficient performance of irrigation canals, the losses from the canals need to be minimized. In this paper a modified formulation is presented to solve the optimization model for the design of different canal geometries for minimum seepage loss, in meta-heuristic environment. The complex non-linear and non-convex optimization model for canal design is solved using a probabilistic search algorithm namely Probabilistic Global Search Lausanne (PGSL). The solutions are found to be competitive to those reported in literature while applied for different example problems. To suit for real field applications, three site specific constraints are considered and the sensitivity of solutions for the most popular trapezoidal canals is investigated. The study shows the potential of the proposed approach to perform optimal design of irrigation canals for minimum seepage loss.
S. Gholizadeh, M.r. Sheidaii , S. Farajzadeh,
Volume 2, Issue 1 (3-2012)
Abstract
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the variable length of span and height are considered. Back-propagation (BP), radial basis function (RBF) and generalized regression (GR) neural networks are trained for efficiently prediction of the seismic design of the structures. The numerical results demonstrate the superiority of the GR over the BP and RBF neural networks.
S. Shojaee, M. Mohamadianb , N. Valizadeh,
Volume 2, Issue 1 (3-2012)
Abstract
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular locations of materials in the structure is used and find the optimal distribution of material in the domain to minimize the compliance of the system under a volume constraint. The refinement is employed for construction of the physical mesh to be consistent with the mesh is used for level set function. Then a parameterized level set method with radial basis functions (RBFs) is used for structural topology optimization. Finally, several numerical examples are provided to confirm the validity of the method.