Showing 80 results for Analysis
A. Kaveh, F. Shokohi , B. Ahmadi,
Volume 7, Issue 2 (3-2017)
Abstract
In this study, the recently developed method, Tug of War Optimization (TWO), is employed for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Tug of War Optimization algorithm. Design and cost optimization of WDSs are performed simultaneous with analysis process using an objective function in order to satisfying the analysis criteria, design constraints and cost optimization. A number of practical examples of WDSs are selected to demonstrate the efficiency of the presented algorithm. The findings of this study clearly signify the efficiency of the TWO algorithm in reducing the water distribution networks construction cost.
M. Rezaiee-Pajand, R. Naserian,
Volume 7, Issue 2 (3-2017)
Abstract
By minimizing the total potential energy function and deploying the virtual work principle, a higher-order stiffness matrix is achieved. This new tangent stiffness matrix is used to solve the frame with geometric nonlinear behavior. Since authors’ formulation takes into account the higher-order terms of the strain vector, the convergence speed of the solution process will increase. In fact, both linear and nonlinear parts of the frame axial strains are included in the presented formulation. These higher-order terms affect the resulting unbalanced force and also frame tangent stiffness. Moreover, the finite element method, updated Lagrangian description, and arc length scheme are employed in this study. To check the efficiency of the proposed strategy, several numerical examples are solved. The findings indicate that the authors’ technique can accurately trace the structural equilibrium paths having the limit points.
M. Hajiazizi, F. Heydari, M. Shahlaei,
Volume 7, Issue 4 (10-2017)
Abstract
In this paper the factor of safety (FS) and critical line-segments slip surface obtained by the Alternating Variable Local Gradient (AVLG) optimization method was presented as a new topic in 2D. Results revealed that the percentage of reduction in the FS obtained by switching from a circular shape to line segments was higher with the AVLG method than other methods. The 2D-AVLG optimization method is a new topic for finding critical line-segments slip surface which has been addressed in this paper. In fact, the line-segments slip surface is a flexible slip surface. Examples proves the efficiency and precision of the 2D-AVLG method for obtaining the line-segments critical slip surface compared to the circular and circular-line slip surfaces.
M. Fadavi Amiri, S. A. Soleimani Eyvari, H. Hasanpoor, M. Shamekhi Amiri,
Volume 8, Issue 1 (1-2018)
Abstract
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil type, source mechanism, focal depth, etc.) well. In this paper, a new method for generating artificial earthquake accelerograms from the target earthquake spectrum is suggested based on the use of wavelet analysis and artificial neural networks. This procedure applies the learning capabilities of neural network to expand the knowledge of inverse mapping from the response spectrum to the earthquake accelerogram. At the first step, wavelet analysis is utilized to decompose earthquake accelerogram into several levels, which each of them covers a special range of frequencies. Then for every level, a neural network is trained to learn the relationship between the response spectrum and wavelet coefficients. Finally, the generated accelerogram using inverse discrete wavelet transform is obtained. In order to make earthquake signals compact in the proposed method, the multiplication sample of LPC (Linear predictor coefficients) is used. Some examples are presented to demonstrate the effectiveness of the proposed method.
M. Khatibinia, M. Roodsarabi, M. Barati,
Volume 8, Issue 2 (8-2018)
Abstract
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomains are implicitly represented by the discontinuities of BLS functions taking two values 1 or −1. The subdomains interfaces are represented by discontinuities of these functions. Using a two–phase approximation and the BLS approach the original structural optimization problem is reformulated as an equivalent constrained optimization problem in terms of this level set function. For solving drawbacks of the conventional finite element method (FEM), IGA based on a Non–Uniform Rational B–Splines (NURBS) is adopted to describe the field variables as the geometry of the domain. For this purpose, the B–Spline functions are utilized as the shape functions of FEM for analysis of structure and the control points are considered the same role with nodes in FEM. Three benchmark examples are presented to investigate the performance the topology optimization based on the proposed method. Numerical results demonstrate that the BLS method with IGA can be utilized in this field.
M. Movahedi Rad,
Volume 8, Issue 3 (10-2018)
Abstract
For application of the plastic analysis and design methods the control of the plastic behaviour of the structures is an important requirement. In this study, the complementary strain energy of the residual forces is considered as an overall measure of the plastic performance of the structure. Shakedown theorem for the analysis of the plastic behaviour of the laterally loaded piles is developed and applied to single vertical long pile. Limit curves are presented for the shakedown load multipliers. The formulations of the problems lead to mathematical programming which are solved by the use of nonlinear algorithm.
A. Behnam , M. R. Esfahani,
Volume 8, Issue 3 (10-2018)
Abstract
In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial interaction curve is obtained for them. The specifications of these frames and their analytical results are defined as inputs and targets of artificial neural network and a relatively accurate estimation model of the nonlinear behavior of these beam-columns is presented. In the end, the results of neural network are compared to some analytical examples of biaxial bending to determine the accuracy of the model.
K. Biabani Hamedani , V. R. Kalatjari,
Volume 8, Issue 4 (10-2018)
Abstract
Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint. The framework is in the form of a computer program called RBO-S>S. The objective of the optimization is to minimize the total weight of the truss structures against the aforementioned constraint. System reliability analysis of truss structures is performed through branch-and-bound method. Also, optimization is carried out by genetic algorithm. The research results show that system reliability analysis of truss structures can be performed with sufficient accurately using the RBO-S>S program. In addition, it can be used for optimal design of truss structures. Solutions are suggested to reduce the time required for reliability analysis of truss structures and to increase the precision of their reliability analysis.
A. Gholizad, S. Eftekhar Ardabili,
Volume 8, Issue 4 (10-2018)
Abstract
The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative approach is proposed to generate near-fault pulse-like ground motions. A smoothening approach is taken to extract directivity pulses from an ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing directivity pulse on the previously generated nonpulse-type motion. The main objective of this study is to generate near-field spectrum compatible records. Particle Swarm Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce the dimension of ANFIS input vectors. Artificial records are generated for the first, second and third level of wavelet packet decomposition. Finally, a number of interpretive examples are presented to show how the method works. The results show that the response spectra of generated records are decently compatible with the target near-field spectrum, which is the main objective of the study.
M. Mashayekhi, H. E. Estekanchi , H. Vafai,
Volume 9, Issue 1 (1-2019)
Abstract
Endurance Time method is a time history dynamic analysis in which structures are subjected to increasing excitations. These excitations are known as endurance time excitation functions (ETEF). This study proposes a new method for generating ETEFs. In the proposed method, a new basis function for representing ETEFs is introduced. This type of ETEFs representation creates an intelligent space for this ETEFs simulating optimization problem. The proposed method is then applied in order to simulate new ETEFs. To investigate the efficiency of this proposed optimization space, newly generated ETEFs are compared with those simulated by conventional approaches. Results show an improvement in the accuracy of ETEFs as well as the reduction in the required computational time.
B. Ganjavi , I. Hajirasouliha,
Volume 9, Issue 2 (4-2019)
Abstract
This paper presents a practical methodology for optimization of concentrically braced steel frames subjected to forward directivity near-fault ground motions, based on the concept of uniform deformation theory. This is performed by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In this regard, to overcome the complexity of the ordinary steel concentrically braced frames a simplified analytical model for seismic response prediction of concentrically braced frames is utulized. In this approach, a multistory frame is reduced to an equivalent shear-building model by performing a pushover analysis. A conventional shear-building model has been modified by introducing supplementary springs to account for flexural displacements in addition to shear displacements. It is shown that modified shear-building models provide a better estimation of the nonlinear dynamic response of real framed structures compared to nonlinear static procedures. Finally, the reliability of the proposed methodology has been verified by conducting nonlinear dynamic analysis on 5, 10 and 15 story frames subjected to 20 forward directivity pulse type near-fault ground motions.
M. Danesh, S. Gholizadeh, C. Gheyratmand,
Volume 9, Issue 3 (6-2019)
Abstract
The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.
A. Hajishabanian, K. Laknejadi, P. Zarfam,
Volume 9, Issue 4 (9-2019)
Abstract
One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this study, a new procedure developed for incorporating two important sources of uncertainties in design optimization process of steel moment resisting frames, is proposed. The first source is related to the connection parameter uncertainties and the second one to seismic demand uncertainty. Additionally Mont Carlo (MC) simulation and a variance reduction technique (VRT) are utilized to deal with uncertainties and to reduce the corresponding computational cost. In the proposed procedure two design objectives are considered, which are structural weight and collapse prevention reliability index for a moment resisting frame in such a way that leads to a set of optimum designs with minimum weight and less possible amounts of sensitivity to connection parameters uncertainties and spectral acceleration uncertainty as seismic demand variation. Additionally, in this procedure the reliability index is computed considering all FEMA-356 performance acceptance criteria, the approach that has never been investigated in other studies. The efficiency of this approach is illustrated by exhibiting a set of optimum designs, in the form of both objective values and investigating nonlinear behavior of optimum designs compared with non-optimum designs. This procedure is introduced in this paper with emphasize on the collapse limit state and applying pushover analysis for studying the nonlinear behavior of structural elements.
S. Amini-Moghaddam, M. I. Khodakarami, B. Nikpoo,
Volume 10, Issue 1 (1-2020)
Abstract
This paper aims to obtain the optimal distance between the adjacent structures using Particle Swarm Optimization (PSO) algorithm considering structure-soil-structure systems; The optimization algorithm has been prepared in MATLAB software and connected into OpenSees software (where the structure-soil-structure system has been analyzed by the direct approach). To this end, a series of adjacent structures with various slenderness have been modeled on the three soil types according to Iranian seismic code (Standard No. 2800) using the direct method. Then they have been analyzed under six earthquake excitations with different risk levels (low, moderate, and high).
The results are compared with the proposed values of separation gap between adjacent structures in the Iranian seismic code (Standard No. 2800). Results show that since structures with the same height constructed on a stiff soil will move in the same phase, there is no need to put distance between them. Although, the structures with the height more than 6-story frames where are located on a soft soil are needed to be separated. Additionally, the results show more separation gap between two adjacent structures when the risk level of earthquake is high. In general, the values which are presented in Standard No. 2800 are not suitable for low /moderate-rise structures specially when they are subjected to a high-risk level earthquake and are located on a soft soil and this separation gap should be increased about 10 to 90 percentage depend on the conditions but these values are appropriate for the adjacent structures with same height where are subjected to a low-risk level earthquakes built on soft soil.
M. R. Hashemi , R. Vahdani, M. Gerami , A. Kheyrodin,
Volume 10, Issue 1 (1-2020)
Abstract
Dampers can reduce structural response under dynamic loads. Since dampers are costly, the design of structures equipped with dampers should make their application economically justifiable. Among the effective cost reduction factors is optimal damper placement. Hence, this study intended to find the optimal viscous damper placement using efficient optimization methods. Taking into account the nonlinear behavior of structure, this optimal distribution can be determined through meeting story-wise damping requirements such that the structure provides the minimum dynamic response and becomes economically justified. To compare the effect of different damper placement layouts on structural response and determine the objective function of optimization, the ratio of peak structural displacement to yield displacement was used as the damage index and objective function of optimization. Colliding Bodies' Optimization (CBO) algorithm was used for optimal damper placement. In this study, the 3- and 4-story concrete frames with different damper placement conditions were studied. Results confirmed the efficiency of the proposed method and algorithm in optimal viscous damper placement in each story. It was also discovered that the application of dampers on higher stories partially uniforms height-wise damage distribution and works towards the design goals.
H.a. Jahangiry, M. Gholhaki, M. K. Sharbatdar ,
Volume 10, Issue 1 (1-2020)
Abstract
This research focuses on the effects of stiffeners and architectural opening on the steel shear wall topology optimization. To this aim, four relevant issues have been considered. The first issue is the optimality Pattern of the shear wall without stiffeners. The second is the Optimality Pattern of the shear wall with stiffeners in two directions. The third is the investigation on the topology optimization of the shear walls with fixed opening and the fourth is the multi-material topology optimization of the above issues. In the optimize process, the level set method based on the shape sensitivity and the finite element analysis for two-dimensional linear elastic problems has been used. The level set function implicitly indicated the boundaries of the design domain. Several numerical examples are used to demonstrate the optimal paths in the steel shear walls. The results show that optimal values have been changed by replacing stiffeners and creating openings in the wall, but the optimal topologies almost have a shape like a concentric bracing. Also, in the conventional shear walls (one material) the horizontal stiffeners have a significant effect on their performance.
H. R. Irani, V. R. Kalatjari, M.h. Dibaei Bonab,
Volume 10, Issue 1 (1-2020)
Abstract
This paper presents a design process using a course grained parallel genetic algorithm to optimize three-dimensional steel moment frames by considering the axial force and biaxial bending moments interaction in plastic hinge formation. The objective function is to minimize the total weight of the structure subjected to the reliability constraint of the structural system. System reliability analysis is performed through the proposed Modified Latin Hypercube Simulation (M-LHS) Method. For optimization, a 3DSMF-RBO program is written in CSHARP programming language. The reliability analysis results show a large decrease in the number of simulation samples and subsequently a decrease in the execution time of optimization computation. The optimization results indicate that by considering interaction of the axial force and biaxial bending moments in plastic hinge formation rather than the only bending moment, to some extent increases the total weight of the designed structure.
A. Shariati, R. Kamgar, R. Rahgozar,
Volume 10, Issue 3 (6-2020)
Abstract
The utilization of passive energy dissipation systems has been created a revolution in the structural engineering industry due to their advantages. Fluid Viscous Damper (FVD) is one of these control systems. It has been used in many different industries, such as the army, aerospace, bridge, and building structures. One of the essential questions about this system is how it can combine with the bracing system to enhance its abilities. In this paper, a comparison between the responses of a twelve-story steel building retrofitted by four layouts of bracings systems (i.e., chevron, diagonal, toggle, and X-brace) is studied. These bracing systems are equipped by FVD to find the optimum layout for these systems. Buildings are modeled nonlinearity and excited by an earthquake (Manjil earthquake). For this purpose, the Fast Nonlinear Analysis (FNA) is performed using the SAP2000 software. The results show that FVD alters some of the structural behaviors such as inter-story drift when combining with a chevron-bracing system. As a result, it can decrease the motion induced by the earthquake significantly. Besides, the results show that the chevron model has the best performance for the high-rise building in comparison with the other studied systems. As a result, for toggle, chevron, and diagonal bracing systems, the formation of link damper could absorb 66%, 72%, and 79% of input energy instead of modal damping energy, respectively.
M. Khatibinia, M. Roodsarabi,
Volume 10, Issue 3 (6-2020)
Abstract
The present study proposes a hybrid of the piecewise constant level set (PCLS) method and isogeometric analysis (IGA) approach for structural topology optimization. In the proposed hybrid method, the discontinuities of PCLS functions is used in order to present the geometrical boundary of structure. Additive Operator Splitting (AOS) scheme is also considered for solving the Lagrange equations in the optimization problem subjected to some constraints. For reducing the computational cost of the PCLS method, the Merriman–Bence–Osher (MBO) type of projection scheme is applied. In the optimization process, the geometry of structures is described using the Non–Uniform Rational B–Splines (NURBS)–based IGA instead of the conventional finite element method (FEM). The numerical examples illustrate the efficiency of the PCLS method with IGA in the efficiency, convergence and accuracy compared with the other level set methods (LSMs) in the framework of 2–D structural topology optimization. The results of the topology optimization reveal that the proposed method can obtain the same topology in lower number of convergence iteration.
A. Kaveh, A. Eskandari,
Volume 11, Issue 1 (1-2021)
Abstract
The artificial neural network is such a model of biological neural networks containing some of their characteristics and being a member of intelligent dynamic systems. The purpose of applying ANN in civil engineering is their efficiency in some problems that do not have a specific solution or their solution would be very time-consuming. In this study, four different neural networks including FeedForward BackPropagation (FFBP), Radial Basis Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression Neural Network (GRNN) have been efficiently trained to analyze large-scale space structures specifically double-layer barrel vaults focusing on their maximum element stresses. To investigate the efficiency of the neural networks, an example has been done and their corresponding results have been compared with their exact amounts obtained by the numerical solution.