Showing 27 results for Optimization.
A. Kaveh, F. Shokohi , B. Ahmadi,
Volume 7, Issue 2 (3-2017)
Abstract
In this study, the recently developed method, Tug of War Optimization (TWO), is employed for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Tug of War Optimization algorithm. Design and cost optimization of WDSs are performed simultaneous with analysis process using an objective function in order to satisfying the analysis criteria, design constraints and cost optimization. A number of practical examples of WDSs are selected to demonstrate the efficiency of the presented algorithm. The findings of this study clearly signify the efficiency of the TWO algorithm in reducing the water distribution networks construction cost.
A. Kaveh, M. Ilchi Ghazaan,
Volume 7, Issue 3 (7-2017)
Abstract
In this paper, MATLAB code for a recently developed meta-heuristic methodology, the vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based algorithm which simulates a free vibration of single degree of freedom systems with viscous damping. The particles gradually approach to their equilibrium positions that are achieved from current population and historically best position. Two truss towers with 942 and 2386 elements are examined for the validity of the present algorithm; however, the performance VPS has already been proven through truss and frame design optimization problems.
V. Nandha Kumar, C. R. Suribabu,
Volume 7, Issue 3 (7-2017)
Abstract
Optimal design of cantilever reinforced concrete retaining wall can lead considerable cost saving if its involvement in hill road formation and railway line formation is significant. A study of weight reduction optimization of reinforced cantilever retaining wall subjected to a sloped backfill using Differential Evolution Algorithm (DEA) is carried out in the present research. The retaining wall carrying a sloped backfill is investigated manually and the problem is solved using the algorithm and results were compared. The Indian Standard design philosophy is followed throughout the research. The design variables, constraint equations were determined and optimized with DEA. The single objective constrained optimization problem deals with seven design variables of cantilever retaining wall in which four design variables constitutes to geometric dimensions and remaining three variables constitutes to the reinforcement steel area. Ten different constraints are considered and each of it deals with ten failure modes of retaining wall. Further, a sensitivity analysis is carried out by varying the parameters namely, height of the stem and thickness of stem at top, both of it being a constant design variable in the normal optimization problem. Results show that about 15% weight reduction is achieved while comparing with manual solution.
A. Mahallati Rayeni, H. Ghohani Arab, M. R. Ghasemi,
Volume 8, Issue 4 (10-2018)
Abstract
This paper presents an improved multi-objective evolutionary algorithm (IMOEA) for the design of planar steel frames. By considering constraints as a new objective function, single objective optimization problems turned to multi objective optimization problems. To increase efficiency of IMOEA different Crossover and Mutation are employed. Also to avoid local optima dynamic interference of mutation and crossover are considered. Feasible particles called elites which are very helpful for better mutation and crossover considered as a tool to increase efficiency of proposed algorithm. The proposed evolutionary algorithm (IMOEA) is utilized to solve three well-known classical weight minimization problems of steel moment frames. In order to verify the suitability of the present method, the results of optimum design for planar steel frames are obtained by present study compared to other researches. Results indicate that, as far as the convergence, speed of the optimization process and quality of optimum design are concerned behavior, IMOEA is significantly superior to other meta-heuristic optimization algorithms with an acceptable global answer.
K. Khashi, H. Dehghani, A. A. Jahanara,
Volume 8, Issue 4 (10-2018)
Abstract
This paper illustrates an optimization procedure of concrete beam-column joints subjected to shear that are strengthened with fiber reinforced polymer (FRP). For this aim, five different values have been considered for length, width and thickness of the FRP sheets which created 125 different models to strengthen of concrete beam-column joints. However, by using response surface methodology (RSM) in design expert software the number of these models is reduced to 20. Then, each of 20 models is simulated in ABAQUS finite element software and shear capacity is also determined. The relationship between different dimensions of the FRP sheets and shear capacity are specified by using RSM. Furthermore the optimum dimensions are determined by particle swarm optimization (PSO) algorithm.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.
F. Abdollahi , S. M. Tavakkoli,
Volume 9, Issue 4 (9-2019)
Abstract
In this paper, topology optimization is utilized for damage detection in three dimensional elasticity problems. In addition, two mode expansion techniques are used to derive unknown modal data from measured data identified by installed sensors. Damages in the model are assumed as reduction of mass and stiffness in the discretized finite elements. The Solid Isotropic Material with Penalization (SIMP) method is used for parameterizing topology of the structure. Difference between mode shapes of the model and real structure is minimized via a mathematical based algorithm. Analytical sensitivity analysis is performed to obtain derivatives of objective function with respect to the design variables. In order to illustrate the accuracy of the proposed method, four numerical examples are presented.
H. Fazli,
Volume 9, Issue 4 (9-2019)
Abstract
Composite RCS building frames integrate reinforced concrete columns with structural steel beams to provide an efficient solution for the design and construction of earthquake-resisting structures. In this paper, an optimization framework is developed for performance-based seismic design of planar RCS moment resisting frames. The objective functions are defined as minimizing the construction cost and the seismic damage. The design variables are obtained in a two-stage design optimization procedure; the elastic design in which column cross-section dimensions are determined and the inelastic design in which beam cross-sections and column reinforcements are obtained. Two design examples are presented to demonstrate the applicability and efficiency of the proposed method. Based on the obtained results, it is concluded that the proposed design optimization procedure is a viable approach in producing cost effective seismic designs of composite RCS frames, with reliable seismic performance and reduced damage potential in the event of a severe earthquake ground motion.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini, H. Abedini,
Volume 10, Issue 3 (6-2020)
Abstract
In this research, a new objective function has been proposed for optimal design of the Buckling Restrained Braced Frames (BRBFs) is performed using nonlinear time history analysis. The BRBF is a particular type of bracing system that has been widely utilized in recent years. The nonlinear time history analysis also provides a detailed view of the behavior of the structure. The purpose of this study is to provide an optimal design based on minimizing the weight of the structure while increasing the energy dissipation capability of the structure. Due to the complexity of the problem, the Enhanced Vibrating Particles Systems (EVPS) meta-heuristic algorithm is used to perform the optimization. Here, a 3-story frame, a 6-story frame and a 9-story frame are investigated simultaneously considering the continuous and discrete optimization.
M. Danesh, A. Iraji,
Volume 10, Issue 4 (10-2020)
Abstract
The efficiency of braced structures depends significantly on structure response under seismic loads. The main design challenge for these type of structures is to select shape, number of spans, and type of connections appropriately. Therefore, introducing an optimized and cost-effective design including a certain level of safety and performance against natural hazards seems to be an inevitable necessity. The present work introduces a performance-based design for braced steel structures as well as an optimized arrangement of braces and connection types via using finite difference algorithm. The results show that the latter two factors are very important and necessary to achieve an optimized design for braced steel structures.
H. Veladi, R. Beig Zali,
Volume 11, Issue 3 (8-2021)
Abstract
The optimal design of dome structures is a challenging task and therefore the computational performance of the currently available techniques needs improvement. This paper presents a combined algorithm, that is supported by the mixture of Charged System Search (CSS) and Teaching-Learning-based optimization (TLBO). Since the CSS algorithm features a strong exploration and may explore all unknown locations within the search space, it is an appropriate complement to enhance the optimization process by solving the weaknesses with using another optimization algorithm’s strong points. To enhance the exploitation ability of this algorithm, by adding two parts of Teachers phase and Student phase of TLBO algorithm to CSS, a method is obtained that is more efficient and faster than standard versions of these algorithms. In this paper, standard optimization methods and new hybrid method are tested on three kinds of dome structures, and the results show that the new algorithm is more efficient in comparison to their standard versions.
T. Bakhshpoori,
Volume 12, Issue 1 (1-2022)
Abstract
Metaheuristics are considered the first choice in addressing structural optimization problems. One of the complicated structural optimization problems is the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. On the other hand, natural frequency constraints are useful to control the responses of a dynamically exciting structure. In this regard, this study uses for the first time the water evaporation optimization (WEO) algorithm to address this problem. Four benchmark trusses are considered for experimental investigation of the WEO. Obtained results indicate the comparative performance of WEO to the best-known algorithms in this problem, high performance in comparison to those of different optimization techniques, and high performance in comparison to all algorithms in terms of robustness. The simulation results clearly show a good balance between the global and local exploration abilities of WEO and its potential robust efficiency for other complicated constrained engineering optimization problems.
Sh. Bijari, M. Sheikhi Azqandi,
Volume 12, Issue 2 (4-2022)
Abstract
In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under American Concrete Institute’s ACI 318-05 Standard. So, the numerical examples considered in this study have a large number of design variables and design constraints that make it complicated to converge the global optimal design. The ITEO has an excellent balance between the two phases of exploration and extraction and it has a high ability to find the optimal point of such problems. The comparison results between the ITEO and some other metaheuristic algorithms show the proposed method is competitive compared to others, and in some cases, superior to some other available metaheuristic techniques in terms of the faster convergence rate, performance, robustness of finding an optimal design solution, and needs a smaller number of function evaluations for designing considered constrained engineering problems.
P. Hosseini, A. Kaveh, S. R. Hoseini Vaez,
Volume 12, Issue 4 (8-2022)
Abstract
The existence of uncertainties in engineering problems makes it essential to consider these effects at all times. Robust design optimization allows a design to be made less sensitive to uncertain input parameters. Actually, robust design optimization reduces the sensitivity of the objective function and the variations in design performance when uncertainty exists. In this study, two space trusses were optimized based on the modulus of elasticity, yield stress, and cross-sectional uncertainties in order to increase the response robustness and decrease the weight. The displacement of one node has been used as the criterion for Robust Design Optimization (RDO) of these two structures. Two trusses with 72 members and 582 members are considered, which are famous trusses in the field of structural optimization. Also, the EVPS meta-heuristic algorithm was employed which is an enhanced version of the VPS algorithm based on the single degrees of freedom of a system with viscous damping.
V. Nzarpour, S. Gholizadeh,
Volume 13, Issue 1 (1-2023)
Abstract
Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges. The MSA is inspired by the Physics and its superiority over many metaheuristics has been demonstrated in tackling several standard benchmark test functions. In the current work, the performance of MSA is compared with that of two other metaheuristics and it is shown that the MSA is an efficient algorithm to tackle the optimization problem of cable-stayed bridges.
M. Ghorbanzadeh, P. Homami, M. Shahrouzi,
Volume 13, Issue 1 (1-2023)
Abstract
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most probable point in the standard normal space and the subsequent reliability index with a fast convergence rate. The problem is solved by using a modified trust-region sequential quadratic programming approach that evaluates step direction and tunes step size through a linearized procedure. Then, the probability expectation method is implemented to eliminate the linearization error. The new applications of the proposed method could overcome high nonlinearity of the limit state function and improve the accuracy of the final result, in good agreement with the Monte Carlo sampling results. The proposed algorithm robustness is comparatively shown in various numerical benchmark examples via well-established classes of the first-order reliability methods. The results demonstrate the successive performance of the proposed method in capturing an accurate reliability index with higher convergence rate and competitive effectiveness compared with the other first-order methods.
M. Ramezani, M. R. Mohammadizadeh, S. Shojaee,
Volume 13, Issue 2 (4-2023)
Abstract
In recent years, there has been a lot of interest in the development and deployment of control methods that use different components of the building to mitigate the seismic response of the structure. Meanwhile, the building facade, as a non-structural component, can be a suitable alternative in affecting the structure's behavior because of its role as an envelope of the building with a significant weight. Among the modular cladding systems, the Double Skin Facade (DSF) can be considered a passive system due to the distance of the exterior layer from the main structure and sufficient continuity and rigidity. In this study, DSF systems are used as Peripheral Mass Dampers (PMDs) that control structural movements by dissipating energy during strong motions. The PMD system provides a building with several inherent dampers without the need for extra mass. To show the reliability and efficiency of the proposed approach, the PMD model is investigated and compared with results available in uncontrolled and Tuned Mass Damper (TMD) models. The PMD model is examined in three structural frames with 10, 20, and 30 stories with the extreme Mass Ratios (MRs) of 5% to 20%. The Particle Swarm Optimization (PSO) is performed on damper parameters of PMD and TMD systems to minimize structural responses. The results demonstrate that an optimal PMD system with multiple inherent mass dampers outperforms a single TMD system.
F. Damghani , S. M. Tavakkoli,
Volume 13, Issue 2 (4-2023)
Abstract
An efficient method is proposed by using time domain responses and topology optimization to identify the location and severity of damages in two-dimensional structures under plane stress assumption. Damage is assumed in the form of material density reduction in the finite element model of the structure. The time domain responses utilized here, are the nodal accelerations measured at certain points of the structure. The responses are obtained by the Newmark method and contaminated with uniformly random noise in order to simulate real conditions. Damage indicators are extracted from the time domain responses by using Singular Value Decomposition (SVD). The problem of damage detection is presented as a topology optimization problem and the Solid Isotropic Material with Penalization (SIMP) method is used for appropriate damage modeling. The objective function is formed based on the difference of singular values of the Hankel matrix for responses of real structure and the analytical model. In order to evaluate the correctness of the proposed method, some numerical examples are examined. The results indicate efficiency of the proposed method in structural damage detection and its parameters such as resampling length in SVD, penalty factor in the SIMP method and number and location of sensors are effective parameters for improving the results.
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 3 (7-2023)
Abstract
Cement, water, fine aggregates, and coarse aggregates are combined to produce concrete, which is the most common substance after water and has a distinctly compressive strength, the most important quality indicator. Hardened concrete's compressive strength is one of its most important properties. The compressive strength of concrete allows us to determine a wide range of concrete properties based on this characteristic, including tensile strength, shear strength, specific weight, durability, erosion resistance, sulfate resistance, and others. Increasing concrete's compressive strength solely by modifying aggregate characteristics and without affecting water and cement content is a challenge in the direction of concrete production. Artificial neural networks (ANNs) can be used to reduce laboratory work and predict concrete's compressive strength. Metaheuristic algorithms can be applied to ANN in an efficient and targeted manner, since they are intelligent systems capable of solving a wide range of problems. This study proposes new samples using the Taguchi method and tests them in the laboratory. Following the training of an ANN with the obtained results, the highest compressive strength is calculated using the EVPS and SA-EVPS algorithms.
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.