Showing 20 results for Meta-Heuristic Algorithm
S. Asil Gharebaghi, M. Ardalan Asl,
Volume 7, Issue 3 (7-2017)
Abstract
A new meta-heuristic method, based on Neuronal Communication (NC), is introduced in this article. The neuronal communication illustrates how data is exchanged between neurons in neural system. Actually, this pattern works efficiently in the nature. The present paper shows it is the same to find the global minimum. In addition, since few numbers of neurons participate in each step of the method, the cost of calculation is less than the other comparable meta-heuristic methods. Besides, gradient calculation and a continuous domain are not necessary for the process of the algorithm. In this article, some new weighting functions are introduced to improve the convergence of the algorithm. In the end, various benchmark functions and engineering problems are examined and the results are illustrated to show the capability, efficiency of the method. It is valuable to note that the average number of iterations for fifty independent runs of functions have been decreased by using Neuronal Communication algorithm in comparison to a majority of methods.
M.h. Rabiei, M.t. Aalami, S. Talatahari,
Volume 8, Issue 3 (10-2018)
Abstract
This paper utilizes the Colliding Bodies of Optimization (CBO), Enhanced Colliding Bodies of Optimization (ECBO) and Vibrating Particles System (VPS) algorithms to optimize the reservoir system operation. CBO is based on physics equations governing the one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass and ECBO utilizes memory to save some historically best solutions and uses a random procedure to escape from local optima. VPS is based on simulating free vibration of single degree of freedom systems with viscous damping. To evaluate the performance of these three recent population-based meta-heuristic algorithms, they are applied to one of the most complex and challenging issues related to water resource management, called reservoir operation optimization problems. Hypothetical 4 and 10-reservoir systems are studied to demonstrate the effectiveness and robustness of the algorithms. The aim is on discovering the optimum mix of releases, which will lead to maximum benefit generation throughout the system. Comparative results show the successful performance of the VPS algorithm in comparison to the CBO and its enhanced version.
D. Sedaghat Shayegan, A Lork, S.a.h. Hashemi,
Volume 9, Issue 3 (6-2019)
Abstract
In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 1 (1-2020)
Abstract
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
E. Pouriyanezhad, H. Rahami, S. M. Mirhosseini,
Volume 10, Issue 2 (4-2020)
Abstract
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calculation and new population generation in these two methods are completely different. At each stage of the ECM algorithm, successful distributions are identified and the covariance matrix of the successful distributions is formed. Subsequently, by the help of the principal component analysis (PCA), the scattering directions of these distributions will be achieved. The new population is generated by the combination of weighted directions that have a successful distribution and using random normal distribution. In the discrete ECM method, in case of succeeding in a certain number of cycles the step size is increased, otherwise the step size is reduced. In order to determine the efficiency of this method, three benchmark steel frames were optimized due to the resistance and displacement criteria specifications of the AISC-LRFD, and the results were compared to other optimization methods. Considerable outputs of this algorithm show that this method can handle the complex problems of optimizing discrete steel frames.
M. Shahrouzi,
Volume 10, Issue 3 (6-2020)
Abstract
Meta-heuristics have received increasing attention in recent years. The present article introduces a novel method in such a class that distinguishes a number of artificial search agents called players within two teams. At each iteration, the active player concerns some other players in both teams to construct its special movements and to get more score. At the end of some iterations (like quarters of a sports game) the teams switch their places for fair play. The algorithm is developed to solve a general purpose optimization problem; however, in this article its application is illustrated on structural sizing design. Switching Teams Algorithm is presented as a parameter-less population-based algorithm utilizing just two control parameters. The proposed method can recover diversity in a novel manner compared to other meta-heuristics in order to capture global optima.
Y. Naserifar, M. Shahrouzi,
Volume 10, Issue 4 (10-2020)
Abstract
Passive systems are preferred tools for seismic control of buildings challenged by probabilistic nature of the input excitation. However, other types of uncertainty still exist in parameters of the control device even when optimally tuned. The present work concerns optimal design of multiple-tuned-mass-damper embedded on a shear building by a number of meta-heuristics. They include well-known genetic algorithm and particle swarm optimization as well as more recent gray wolf optimizer and its hybrid method embedding swarm intelligence. The study is two-fold: first, optimal designs by different meta-heuristics are compared concerning their reduction in structural seismic responses; second, the effect of uncertainty in Multi-Tuned-Mass-Damper parameters, is studied offering new reliability-based curves. Monte Carlo Simulation is employed to evaluate failure probabilities. A variety of structural responses are assessed against seismic excitation including maximal displacement, velocity and acceleration. It is declared that the best algorithm for efficiency and effectiveness has not coincided the best based on the reliability traces. Such traces also show that in a specific range of limit-states, algorithm selection has a serious effect on the reliability results. It was found even more than 35% and depends on the response type.
A. Kaveh, M. R. Seddighian, H. Sadeghi, S. Sadat Naseri,
Volume 10, Issue 4 (10-2020)
Abstract
One of the most crucial problems in geo-engineering is the instability of unsaturated slopes, causing severe loss of life and property worldwide. In this study, five novel meta-heuristic methods are employed to optimize locating the Critical Failure Surface (CFS) and corresponding Factor of Safety (FOS). A Finite Element Method (FEM) code is incorporated to convert the strong form of the Richard’s differential equation to the weak form. More importantly, the derived code can consider both the seismic and seepage conditions additional to the static loading. Eventually, the proposed optimization procedure is validated against benchmark examples and some insights are provided.
F. Rahimi,
Volume 10, Issue 4 (10-2020)
Abstract
By incorporating structural engineering, animal husbandry, and veterinary, this interdisciplinary research accomplishes the following two main objectives: 1) design and optimization to reduce the weight of the steel structure skeleton of the stable with ECBO & CBO algorithms; 2) improving the performance of the natural ventilation system in the stable with some changes in the structure's geometric design.
In this study, each algorithm's performance will be investigated in the course of accomplishing the aforementioned objective. Furthermore, using stress ratios by algorithms in each member will be studied. Finally, using the algorithms, a stable steel structure with lower weight is designed.
In this paper, through changing and improving the structure's geometric design, a structure more compatible with the natural ventilation system's requirements is designed. These changes are as follows: 1) design of a taller stable structure; 2) larger design of the air inlets in the joint line between the upper part of the side walls and the lower part of the pitched roof.
S. Talatahari, V. Goodarzimehr, S. Shojaee,
Volume 11, Issue 2 (5-2021)
Abstract
In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap in a local optimum. To fix this problem Harmony search (HS) algorithm, which has a high exploration and high exploitation, is applied as a complement to the SOS algorithm. The weight of the structures' elements is the objective function which minimized under displacement and stress constraints using finite element analysis. To prove the high capabilities of the new algorithm several spatial and planar benchmark truss structures, designed and optimized and the results have been compared with those of other researchers. The results show that the new algorithm has performed better in both exploitation and exploration than other meta-heuristic and mathematics methods.
M. Danesh, J. Abdolhoseyni,
Volume 11, Issue 3 (8-2021)
Abstract
Nowadays, energy crisis is one of the most important issues faced by most countries. Given the accommodation of a large population, high-rise buildings have a significant role in creating or resolving this crisis. A recent solution with regard to the optimization and reduction of energy consumption is using smart systems in buildings. In fact, with the help of modern knowledge, smart buildings consume energy in the right place and time. By transforming a simple building into a dynamic one, not only will it be able to adapt to changing environmental conditions, it will also consider the living habits of dwellers and comfort standards in order to provide maximum satisfaction. Moreover, the money spent on making smart appliances will be fully compensated after a short while, saving the overall costs and energy. This descriptive-analytical study, conducted using library resources, e-books and papers, is an attempt to examine the effect of smartization on optimizing and increasing the efficiency of high-rise buildings. The results of comprehensive surveys in various sectors related to smart buildings show that one can optimize energy consumption to take an effective step in solving global energy issues using smart systems in buildings. This study is devoted to energy consumption of smart systems employing an efficient continuous evolutionary meta-heuristic algorithm.
M. Danesh, A. Iraji , S. Jaafari,
Volume 11, Issue 4 (11-2021)
Abstract
The main object in optimizing reinforced concrete frames based on the performance is decreasing the initial cost or life cycle cost or total cost. The optimization performed here is with the requirement of satisfying story drifts and rotation of plastic hinges. However, this optimization may decrease seismic strength of the structure. Newton Meta-Heuristic Algorithm (NMA) was used to optimize three-, six-, and twelve-story reinforced concrete frames based on the performance and utilizing the cost objective function. The seismic parameters of the optimized frames were calculated. The results showed that the inter-story drifts at the performance level of LS controls the design. According to the results, the objective function for construction cost is not useful for the optimization of the reinforced concrete frames. Because the amounts of the over strength, the absorbed plastic energy, and the ductility factor for the optimized frames are low using the objective function for the construction cost.
M. Shahrouzi, R. Jafari,
Volume 12, Issue 2 (4-2022)
Abstract
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number of investigators as a powerful meta-heuristic algorithm. Several cases of penalty handling techniques are offered and studied using either maximum or summation of constraint violations as well as their combinations. Consequently, the most successive sequence, is identified for the treated continuous and discrete structural examples. Such a dynamic constraint handling is an affordable generalized solution for structural sizing design by iterative population-based algorithms.
D. Sedaghat Shayegan,
Volume 12, Issue 4 (8-2022)
Abstract
In this article, the optimum design of a reinforced concrete solid slab is presented via an efficient hybrid metaheuristic algorithm that is recently developed. This algorithm utilizes the mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The efficiency of this algorithm is compared with mouth-brooding fish (MBF), Neural Dynamic (ND), Cuckoo Search Optimization (COA) and Particle Swarm Optimization (PSO). The cost of the solid slab is considered to be the objective function, and the design is based on the ACI code. The numerical results indicate that this hybrid metaheuristic algorithm can to construct very promising results and has merits in solving challenging optimization problems.
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract
Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
A.h. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 2 (2-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
L. Coelho, M. Shahrouzi, N. Khavaninzadeh,
Volume 14, Issue 4 (10-2024)
Abstract
Diagrids are of practical interest in high-rise buildings due to their architectural configuration and efficiency in withstanding lateral loads by exterior diagonal members. In the present work, diagrid models are screened based on a sizing optimization approach. Section index of each member group is treated as a discrete design variable in the optimization problem to be solved. The structural constraints are evaluated due to Load and Resistant Design Factor regulations under both gravitational and wind loadings. The research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic paradigm for such a large-scale and highly constrained discrete problem. Second, the effect of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third, distinct cases of rigid and flexible bases are compared to study the effect of such boundary conditions on the results. The effect of soil flexibility beneath the foundation on the optimal design was found highly dependent on the diagrid geometry. The best weight and performance in most of the treated examples belong to the geometry that covers two stories by every grid line on the flexible-base.
P. Salmanpour, Dr. A. Deylami, Professor M. Z. Kabir,
Volume 14, Issue 4 (10-2024)
Abstract
The multi-material size optimization of transmission tower trusses is carried out in the present study. Three real-size examples are designed, and statically analyzed, and the Black Hole Mechanics Optimization (BHMO) algorithm, a recently developed metaheuristic optimizer methodology, is employed. The BHMO algorithm's innovative search strategy, which draws inspiration from black hole quantum physics, along with a robust mathematical kernel based on the covariance matrix between variables and their associated costs, efficiently converges to global optimum solutions. Besides, three alloys of steel are taken into account in these examples for discrete size variables, each of which is defined in the problem by a weighted coefficient in terms of the elemental weight. The results also indicate that using multiple materials or alloys in addition to diverse cross-sectional sizes leads to the lowest possible cost and the most efficient solution.