Search published articles


Showing 6 results for Tall Building

M. Shahrouzi, A. Meshkat-Dini , A. Azizi,
Volume 5, Issue 2 (3-2015)
Abstract

Practical design of tall frame-tube and diagrids are formulated as two discrete optimization problems searching for minimal weight undercodified constraints under gravitational and wind loading due to Iranian codes of practice for steel structures (Part 6 & Part 10). Particular encoding of design vector is proposed to efficiently handle both problems leading to minimal search space. Two types of modeling are employed for the sizing problem one by rigid floors without rotational degrees of freedom and the other with both translational and rotational degrees of freedom. The optimal layout of diagrids using rigid model is searched as the second problem. Then performance of Mine Blast Optimization as a recent meta-heuristic is evaluated in these problems treating a number of three-dimensional structural models via comparative study with the common Harmony Search and Particle Swarm Optimization. Considerable benefit in material cost minimization is obtained by these algorithms using tuned parameters. Consequently, effectiveness of HS is observed less than the other two while MBO has shown considerable convergence rate and particle swarm optimiztion is found more trustable in global search of the second problem.
M. Shahrouzi, N. Khavaninzadeh , A. Jahanbakhsh,
Volume 10, Issue 2 (4-2020)
Abstract

Partricular features of overpassing local optima and providing near-optimal soultion in practical time has led researchers to apply metaheuristics in several engineering problems. Optimal design of diagrids as one of the most efficient structural systems in tall buildings has been concerned here. Jaya algorithm as a recent paramter-less optimization method is employed to solve the problem using a set of available sections. Furthermore, passive congregation is embedded in Jaya without adding any extra control parameters. Applyig the method in a number of real-size structural examples including diagrids, exhibits performance improvement by the new hybrid algorithm with respect to Jaya.
A. Shariati, R. Kamgar, R. Rahgozar,
Volume 10, Issue 3 (6-2020)
Abstract

The utilization of passive energy dissipation systems has been created a revolution in the structural engineering industry due to their advantages. Fluid Viscous Damper (FVD) is one of these control systems. It has been used in many different industries, such as the army, aerospace, bridge, and building structures. One of the essential questions about this system is how it can combine with the bracing system to enhance its abilities. In this paper, a comparison between the responses of a twelve-story steel building retrofitted by four layouts of bracings systems (i.e., chevron, diagonal, toggle, and X-brace) is studied. These bracing systems are equipped by FVD to find the optimum layout for these systems. Buildings are modeled nonlinearity and excited by an earthquake (Manjil earthquake). For this purpose, the Fast Nonlinear Analysis (FNA) is performed using the SAP2000 software. The results show that FVD alters some of the structural behaviors such as inter-story drift when combining with a chevron-bracing system. As a result, it can decrease the motion induced by the earthquake significantly. Besides, the results show that the chevron model has the best performance for the high-rise building in comparison with the other studied systems. As a result, for toggle, chevron, and diagonal bracing systems, the formation of link damper could absorb 66%, 72%, and 79% of input energy instead of modal damping energy, respectively.
M. Shahrouzi, A. Azizi,
Volume 12, Issue 1 (1-2022)
Abstract

The present work reveals a problem formulation to minimize material consumption and improve efficiency of diagrids to resist equivalent wind loading. The integrated formulation includes not only sizing of structural members but also variation in geometry and topology of such a system. Particular encoding technique is offered to handle practical variation of diagrid modules. A variant of Pseudo-random Directional Search is utilized to solve this problem treating a number of three dimensional structural models. Several issues are investigated including the effect of variation in the building height, its aspect ratio and fixing or releasing diagrid angles. Consequently, especial trend of variation in diagrid angle is observed with superior structural responses with respect to sizing designs of the fixed-angle modules.
V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract

The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
 
L. Coelho, M. Shahrouzi, N. Khavaninzadeh,
Volume 14, Issue 4 (10-2024)
Abstract

Diagrids are of practical interest in high-rise buildings due to their architectural configuration and efficiency in withstanding lateral loads by exterior diagonal members. In the present work, diagrid models are screened based on a sizing optimization approach. Section index of each member group is treated as a discrete design variable in the optimization problem to be solved. The structural constraints are evaluated due to Load and Resistant Design Factor regulations under both gravitational and wind loadings. The research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic paradigm for such a large-scale and highly constrained discrete problem. Second, the effect of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third, distinct cases of rigid and flexible bases are compared to study the effect of such boundary conditions on the results. The effect of soil flexibility beneath the foundation on the optimal design was found highly dependent on the diagrid geometry. The best weight and performance in most of the treated examples belong to the geometry that covers two stories by every grid line on the flexible-base.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb