Search published articles


Showing 21 results for Artificial Neural Network

P. Muthupriya, K. Subramanian, B.g. Vishnuram,
Volume 1, Issue 1 (3-2011)
Abstract

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these models, training and testing using the available experimental results for 140 specimens produced with 7 different mixture proportions are used. The data used in the multi-layer feed forward neural networks models are designed in a format of eight input parameters covering the age of specimen, cement, metakaolin (MK), fly ash (FA), water, sand, aggregate and superplasticizer and in another set of specimen which contain SF instead of MK. According to these input parameters, in the multi-layer feed forward neural networks models are used to predict the compressive strength and durability values of concrete. It shown that neural networks have high potential for predicting the compressive strength and durability values of the concretes containing metakaolin, silica fume and fly ash.
F.r. Rofooei, A. Kaveh, F.m. Farahani,
Volume 1, Issue 3 (9-2011)
Abstract

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For this purpose, a number of 2-D structural models with varying number of bays and stories are designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The seismically–induced damages to these structural models are determined by performing extensive nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the structural models. A database is generated using the level of induced damages versus different parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural networks are trained for estimation of the probable seismic damage index.
G. Ghodrati Amiri, P. Namiranian,
Volume 3, Issue 1 (3-2013)
Abstract

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorithm and learn to relate the dimension reduced response spectrum of records to their wavelet packet coefficients. Trained ANNs are capable to produce wavelet packet coefficients for a specified spectrum, so by using inverse WPT artificial accelerograms obtained. By using these tools, the learning time of ANNs reduced salient and generated accelerograms had more spectrum-compatibility and save their essence as earthquake accelerograms.
H. Fattahi, S. Shojaee, M A. Ebrahimi Farsangi, H. Mansouri,
Volume 3, Issue 3 (9-2013)
Abstract

The excavation damaged zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. In this paper, a methodology was examined for computing the creation probability of damaged zone by Latin hypercube sampling based on a feed-forward artificial neural network (ANN) optimized by hybrid particle swarm optimization and genetic algorithm (HPSOGA). The HPSOGA was carried out to decide the initial weights of the neural network. A case study in a test gallery of the Gotvand dam, Iran was carried out and creation probabilities of 0.191 for highly damaged zone (HDZ) and 0.502 for EDZ were obtained.
A. Gholizad , S. D. Ojaghzadeh Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract

Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificial neural network (ANN) has been trained in this article to estimate these forces. This ANN was trained on the results of time history analysis of a three-story building under 702 different loadings. Results of numerical examples verify that the trained ANN can predict the expected forces with negligible deviations.
F. Khademi , K. Behfarnia,
Volume 6, Issue 3 (9-2016)
Abstract

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables. For each set of these input variables, the 28 days compressive strength of concrete were determined. A total number of 140 input-target pairs were gathered, divided into 70%, 15%, and 15% for training, validation, and testing steps in artificial neural network model, respectively, and divided into 85% and 15% for training and testing steps in multiple linear regression model, respectively. Comparing the testing steps of both of the models, it can be concluded that the artificial neural network model is more capable in predicting the compressive strength of concrete in compare to multiple linear regression model. In other words, multiple linear regression model is better to be used for preliminary mix design of concrete, and artificial neural network model is recommended in the mix design optimization and in the case of higher accuracy requirements.


H. Bahadori , M. S. Momeni,
Volume 6, Issue 3 (9-2016)
Abstract

Shear wave velocity (Vs) is known as one of the fundamental material parameters which is useful in dynamic analysis. It is especially used to determine the dynamic shear modulus of the soil layers. Nowadays, several empirical equations have been presented to estimate the shear wave velocity based on the results from Standard Penetration Test (SPT) and soil type. Most of these equations result in different estimation of Vs for the same soils. In some cases a divergence of up to 100% has been reported. In the following study, having used the field study results of Urmia City and Artificial Neural Networks, a new correlation between Vs and several simple geotechnical parameters (i.e. Modified SPT value number (N60), Effective overburden stress, percentage of passing from Sieve #200 (Fc), plastic modulus (PI) and mean grain size (d50)) is presented. Using sensitivity analysis it is been shown that the effect of PI in Vs prediction is more than that of N60 in over consolidated clays. It is also observed that Fc has a high influence on evaluation of shear wave velocity of silty soils.


M. Feizbakhsh , M. Khatibinia,
Volume 7, Issue 3 (7-2017)
Abstract

This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their performances are comparatively evaluated in order to find the best prediction model. In this study, SCC mixtures containing different percentage of nano SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary combining of these nanoparticles are selected. The results indicate that the PSOPC–ANFIS approach in comparison with the ANFIS and ANN techniques obtains an improvement in term of generalization and predictive accuracy. Although, the ANFIS and ANN techniques are a suitable model for this purpose, PSO integrated with the ANFIS is a flexible and accurate method due tothe stronger global search ability of the PSOPC algorithm.


S. Philip Bamiyo, O. Austine Uche , M. Adamu,
Volume 7, Issue 4 (10-2017)
Abstract

Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an alternative approach using Artificial Neural Network (ANN) model is produced to predict the load-deflection behavior of a two-way RC slab. In the study, 30 sets of RC slab specimens of sizes 700mm x 600mm x 75mm were cast, cured for 28days using the sprinkling method of curing and tested for deflection experimentally by applying loads ranging from 10kN to 155kN at intervals of 5kN. ANN model was then developed using the neural network toolbox of ANN in MATLAB version R2015a using back propagation algorithm. About 54% of the RC specimens were used for the training of the network while 23% of the sets were used for validation leaving the remaining 23 % for testing the network. The experimental test results show that the higher the applied load on the slab, the higher the deflection. The result of the ANN model shows a good correlation between the experimental test and the predicted results with training, validation and test correlation coefficients of 0.99692, 0.98921 and 0.99611 respectively. It was also found that ANN model is quite efficient in determining the deflection of 2-way RC slab. The predicted accuracy of performance value for the load-deflection set falls at 96.67% of the experimental load-deflection with a 0.31% minimum error using the Microsoft spreadsheet model. As such the comprehensive spreadsheet tool created to incorporate the optimum neural network. The spreadsheet model uses the Microsoft version 2013 excel tool software and can be used by structural engineers for instantaneous access to the prediction if any aspect of a concrete slab behavior given minimal data to describe the slab and the loading condition.


M. Fadavi Amiri, S. A. Soleimani Eyvari, H. Hasanpoor, M. Shamekhi Amiri,
Volume 8, Issue 1 (1-2018)
Abstract

For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil type, source mechanism, focal depth, etc.) well. In this paper, a new method for generating artificial earthquake accelerograms from the target earthquake spectrum is suggested based on the use of wavelet analysis and artificial neural networks. This procedure applies the learning capabilities of neural network to expand the knowledge of inverse mapping from the response spectrum to the earthquake accelerogram. At the first step, wavelet analysis is utilized to decompose earthquake accelerogram into several levels, which each of them covers a special range of frequencies. Then for every level, a neural network is trained to learn the relationship between the response spectrum and wavelet coefficients. Finally, the generated accelerogram using inverse discrete wavelet transform is obtained. In order to make earthquake signals compact in the proposed method, the multiplication sample of LPC (Linear predictor coefficients) is used. Some examples are presented to demonstrate the effectiveness of the proposed method.


A. N. Khan, R. B. Magar, H. S. Chore,
Volume 8, Issue 2 (8-2018)
Abstract

The use of supplementary cementing materials is gradually increasing due to technical, economical, and environmental benefits. Supplementary cementitious materials (SCM) are most commonly used in producing ready mixed concrete (RMC). A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilisation. The performance and effective utilization of various SCMs can be possible to analyze, using the concept of the efficiency factor (k-value). This study describes the overview of various studies carried out on the efficiency factor of SCMs. Also, it is an effort directed towards a specific understanding of the efficiency of SCMs in concrete. Further it includes an overview of artificial neural network (ANN) for the prediction of the efficiency factor of SCMs in concrete. It is found that The model generated through ANN provided a tool to calculate efficiency factor (k) and capture the effects of different parameters such as, water-binder ratio; cement dosage; percentage replacement of SCMs; and curing age.
A. Behnam , M. R. Esfahani,
Volume 8, Issue 3 (10-2018)
Abstract

In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial interaction curve is obtained for them. The specifications of these frames and their analytical results are defined as inputs and targets of artificial neural network and a relatively accurate estimation model of the nonlinear behavior of these beam-columns is presented. In the end, the results of neural network are compared to some analytical examples of biaxial bending to determine the accuracy of the model.
M. Torkan , M. Naderi Dehkordi,
Volume 8, Issue 4 (10-2018)
Abstract

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this objective, first, a set of data pertaining to concrete mix designs containing fly ash was collected. Then, mix design parameters were used as the inputs of the artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) developed for predicting the compressive strength. In all these models, prediction accuracy largely depends on the parameters of the learning model. Hence, the particle swarm optimization (PSO) algorithm, as a powerful population-based algorithm for solving continuous and discrete optimization problems, was used to determine the optimal values of algorithm parameters. The hybrid models were trained and tested with 426 experimental data and their results were compared by statistical criteria. Comparing the results of the developed models with the real values showed that the ANFIS-PSO hybrid model has the best performance and accuracy among the assessed methods.
Gh. Asadzadeh Khoshemehr , H. Bahadori,
Volume 9, Issue 3 (6-2019)
Abstract

Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the seismic response of a site. Therefore, Artificial Neural Networks (ANNs) are reliable and practical estimation methods that can be used to analyze comprehensive measurements such as dominant period of a site, and improve the data. In this paper, the performance of ANNs has been investigated on calculation of the dominant period for a site. Three different models, namely BP, RBF and ANFIS, have been compared to determine the best model that provides the most accurate estimation for the dominant period. The input parameters have been chosen to be alluvial layer thickness, grain size, specific gravity, effective stress, shear wave velocity, standard penetration number, Atterberg limits. Each of the three models has been trained and tested for these input parameters and a unique output which is the dominant period of the site. The results showed that ANNs successfully model complex relationships between soil parameters and seismic parameters of the site, and provide a robust tool to accurately estimate the dominant period of a site. The accurate estimations can be then used for engineering applications including damage assessment and structural health monitoring. In addition, The obtained emulator of RBF model shows the least model error in estimation of dominant period and has been found to be superior to the other evaluated methods.
D. Pourrostam, S. Y. Mousavi, T. Bakhshpoori, K. Shabrang,
Volume 10, Issue 2 (4-2020)
Abstract

In recent years, soft computing and artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been effectively used in various civil engineering applications. This study aims to examine the potential of ANN and ANFIS for modeling the compressive strength of concrete containing expanded perlite powder (EPP). For doing this, a total of forty-five EPP incorporated concrete mixtures were produced and tested for compressive strength at different curing ages of 3, 7, 28, 42 and 90 days. Two different ANN models were developed and the suitable and stable ANN architecture for each model was considered by calculating various statistical parameters. For comparative purposes, two ANFIS models with different membership functions were also trained. According to the results, it can be concluded that the proposed ANN models relatively give a good degree of accuracy in predicting the compressive strength of concrete made with EPP, higher than that of observed from ANFIS models.
S. Anvari, E. Rashedi, S. Lotfi,
Volume 12, Issue 1 (1-2022)
Abstract

Reliable and accurate streamflow forecasting plays a crucial role in water resources systems (WRS) especially in dams operation and watershed management. However, due to the high uncertainty associated WRS components and nonlinear nature of streamflow generations, the realistic streamflow forecasts is still one of the most challenging issue in WRS. This paper aimed to forecast one-month ahead streamflow of Karun river (Iran) by coupling an artificial neural network (ANN) with an improved binary version of gravitational search algorithm (IBGSA), named ANN- IBGSA. To this end, the best lag number for each predictor at Poleshaloo station was firstly selected by auto-correlation function (ACF). The ANN-IBGSA was used to minimize the sum of RMSE and R2 and to identify the optimal predictors. Finally, to characterize the hydro-climatic uncertainties associated with the selected predictors, an
implicit approach of Monte-Carlo simulation (MCS) was applied. The ACF plots indicated a significant correlation up to a lag of two months for the input predictors. The ANN-IBGSA identified the Tmean (t-1), Q(t-1) and Q(t) as the best predictors. Findings demonstrated that the ANN-IBGSA forecasts were considerably better than those previously carried out by researchers in 2013. The average improvement values were 9.91%, 11.85% and 9.13% for RMSE, R2 and MAE, respectively. The Monte-Carlo simulations demonstrated that all of forecasted values lie within the 95% confidence intervals.
 
M. . Fadavi Amiri, E. Rajabi, Gh. Ghodrati Amiri,
Volume 12, Issue 2 (4-2022)
Abstract

Depending on the tectonic activities, most buildings subject to multiple earthquakes, while a single design earthquake is suggested in most seismic design codes. Perhaps, the lack of easy assessment to second shock information and sometimes use of inappropriate methods in estimating these features cause successive earthquakes mainly were ignored in the analysis procedure. In order to overcome to above deficiencies, the learning abilities of artificial neural networks (ANNs) are used in two steps to evaluate the seismic capacity of steel frames consisting moment-resisting frames, ordinary concentrically, and buckling restrained brace (BRB) under critical consecutive earthquakes. For this purpose, peak ground acceleration of second shock (PGAa) is estimated based on the first shock features in the first step. Next, second ANNs estimate the decreased capacity of the damaged structure for LS and CP performance level according to the proposed PGAa from the previous step and some seismic and structural features. The results indicate that ANNs are trained to generalize the unseen information very well and reflect good precision in predicting target results in both steps. Finally, the effect of different parameters and repeated shocks is investigated on the seismic performance of mentioned frames. The results show the proper performance of BRB frames in the case of real and repeated earthquakes.
 
A. Kaveh, M. R. Seddighian, N. Farsi,
Volume 13, Issue 2 (4-2023)
Abstract

Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.
 
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 3 (7-2023)
Abstract

Cement, water, fine aggregates, and coarse aggregates are combined to produce concrete, which is the most common substance after water and has a distinctly compressive strength, the most important quality indicator. Hardened concrete's compressive strength is one of its most important properties. The compressive strength of concrete allows us to determine a wide range of concrete properties based on this characteristic, including tensile strength, shear strength, specific weight, durability, erosion resistance, sulfate resistance, and others. Increasing concrete's compressive strength solely by modifying aggregate characteristics and without affecting water and cement content is a challenge in the direction of concrete production. Artificial neural networks (ANNs) can be used to reduce laboratory work and predict concrete's compressive strength. Metaheuristic algorithms can be applied to ANN in an efficient and targeted manner, since they are intelligent systems capable of solving a wide range of problems. This study proposes new samples using the Taguchi method and tests them in the laboratory. Following the training of an ANN with the obtained results, the highest compressive strength is calculated using the EVPS and SA-EVPS algorithms.
 
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 4 (10-2023)
Abstract

In this study, experimental and computational approaches are used in order to develop and optimize self-compacting concrete mixes (Artificial neural network, EVPS metaheuristic algorithm, Taguchi method). Initially, ten basic mix designs were tested, and an artificial neural network was trained to predict the properties of these mixes. The network was then used to generate ten optimized mixes using the EVPS algorithm. Three mixes with the highest compressive strength were selected, and additional tests were conducted using the Taguchi approach. Inputting these results, along with the initial mix designs, into a second trained neural network, 10 new mix designs were tested using the network. Two of these mixes did not meet the requirements for self-compacting concrete, specifically in the U-box test. However, the predicted compressive strength results showed excellent agreement with low error percentages compared to the laboratory results, which indicates the effectiveness of the artificial neural network in predicting concrete properties, thus indicating that self-compacting concrete properties can be predicted with reasonable accuracy. The paper emphasizes the reliability and cost-effectiveness of artificial neural networks in predicting concrete properties. The study highlights the importance of providing diverse and abundant training data to improve the accuracy of predictions. The results demonstrate that neural networks can serve as valuable tools for predicting concrete characteristics, saving time and resources in the process. Overall, the research provides insights into the development of self-compacting concrete mixes and highlights the effectiveness of computational approaches in optimizing concrete performance.
 

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb