Search published articles


Showing 7 results for Displacement

M. Grigorian, A. Kaveh,
Volume 3, Issue 2 (6-2013)
Abstract

This article introduces three simple ideas that lead to the efficient design of regular moment frames. The finite module concept assumes that the moment frame may be construed as being composed of predesigned, imaginary rectangular modules that fit into the bays of the structure. Plastic design analysis aims at minimizing the demand-capacity ratios of elements of ductile moment frames by inducing the strength and stiffnesses of groups of members in accordance with certain design criteria, rather than investigating their suitability against the same rules of compliance. Collapse modes and stability conditions are imposed rather than investigated. In short, theory of structures is applied rather than followed. Plastic displacement control suggests that in addition to conducting failure analysis, the maximum displacements of plausible failure modes at incipient collapse should also be taken into consideration. While two collapse mechanisms may share the same carrying capacity, their maximum displacements may be different.
A. Zare Hosseinzadeh, G. Ghodrati Amiri, S. A. Seyed Razzaghi,
Volume 6, Issue 2 (6-2016)
Abstract

In  this  paper  a  new  method  is  presented  for  structural  damage  identification.  First,  the damaged structure is  excited by short  duration impact acceleration  and then, the  recorded structural displacement time history responses under free vibration conditions are analyzed by Continuous Wavelet Transform (CWT) and Wavelet Residual Force (WRF) is calculated. Finally, an effective damage-sensitive index is proposed to localize structural damage with a high  level  of  accuracy.  The  presented  method  is  applied  to  three  numerical  examples, namely  a  fifteen-story  shear  frame,  a  concrete  cantilever  beam  and  a  four-story,  two-bay plane steel frame, under different damage patterns, to detect structural damage either in free noise or noisy states. In addition, some comparative studies are carried out to compare the presented  index  with  other  relative  indices.  Obtained  results,  not  only  illustrate  the  good performance of the presented approach for damage identification in engineering structures, but  also  introduce  it  as  a  stable  and  viable  strategy  especially  when  the  input  data  are contaminated with different levels of random noises.


M. Goharriz , S. M. Marandi,
Volume 6, Issue 3 (9-2016)
Abstract

During an earthquake, significant damage can result due to instability of the soil in the area affected by internal seismic waves. A liquefaction-induced lateral ground displacement has been a very damaging type of ground failure during past strong earthquakes. In this study, neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral displacement in both ground slope and free face conditions. The NF-GMDH approach is improved using gravitational search algorithm (GSA). Estimation of the lateral ground displacements requires characterization of the field conditions, principally seismological, topographical and geotechnical parameters. The comprehensive database was used for development of the model obtained from different earthquakes. Contributions of the variables influencing the lateral ground displacement are evaluated through a sensitivity analysis. Performance of the NF-GMDH-GSA models are compared with those obtained from gene-expression programming (GEP) approach, and empirical equations in terms of error indicators parameters and the advantages of the proposed models over the conventional method are discussed. The results showed that the models presented in this research may serve as reliable tools to predict lateral ground displacement. It is clear that a precise correlation is easier to be used in the routine geotechnical projects compared with the field measurement techniques.


A. Csébfalvi,
Volume 6, Issue 3 (9-2016)
Abstract

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equality relation, which practically means that the number of “interesting points” may be exactly one. The recent model resolves this weakness replacing the equality constraint with an inequality constraint. From engineering point of view it is a very important result because we can replace the inequality constraint with a set of inequality constraints without any difficulty. The other very important fact, that the modified displacement-oriented model can be extended very easily to handle stress-oriented relations, which will be demonstrated in the forthcoming paper. Naturally, the more general theoretical model needs more sophisticated numerical problem handling method. Therefore, we replaced the original “optimality-criteria-like” solution searching process with a standard nonlinear programming approach which is able to handle linear (nonlinear) objectives with linear (nonlinear) equality (inequality) constrains. The efficiency of the new approach is demonstrated by an example investigated by several authors. The presented example with reproducible numerical results as a benchmark problem may be used for testing the quality of exact and heuristic solution procedures to be developed in the future for displacement-constrained volume-minimization problems.


M. Khatibinia, H. Gholami, S. F. Labbafi,
Volume 6, Issue 4 (10-2016)
Abstract

Tuned  mass  dampers  (TMDs)  are  as  a  efficient  control  tool  in  order  to  reduce  undesired vibrations  of  tall  buildings  and  large–span  bridges  against  lateral  loads  such  as  wind  and earthquake. Although many researchers has been widely  investigated  TMD systems  due to its  simplicity  and  application,  the  optimization  of  parameters  and  placement  of  TMD  are challenging tasks. Furthermore, ignoring the effects of soil–structure interaction (SSI) may lead to unrealistic desig of structure and its dampers. Hence, the  effects of SSI should be considered  in  the  design  of  TMD.  Therefore,  the  main  aim  of  this  study  is  to  optimize parameters  of  TMD  subjected  to  earthquake  and  considering  the  effects  of  SSI.  In  this regard,  the  parameters  of  TMD  including  mass,  stiffness  and   damping  optimization  are considered  as  the  variables  of  optimization.  The  maximum  absolute  displacement  and acceleration of structure are also simultaneously selected as objective functions. The multi –objective particle  swarm optimization  (MOPSO) algorithm  is adopted  to find  the  optimal parameters  of  TMD.  In  this  study,  the  Lagrangian  method  is  utilized  for  obtaining  the equations of motion for SSI system, and the time domain analysis is implemented based on Newmark method. In order to investigate the effects of SSI in the optimal design of TMD, a 40 storey shear building with a TMD subjected to the El–Centro earthquake is considered. The  numerical  results  show  that  the  SSI  effects  have  the  significant  influence  on  the optimum parameters of TMD.


M. Rezaiee-Pajand, H. Afsharimoghadam,
Volume 7, Issue 1 (1-2017)
Abstract

In this paper, the effect of angle between predictor and corrector surfaces on the structural analysis is investigated. Two objective functions are formulated based on this angle and also the load factor. Optimizing these functions, and using the structural equilibrium path’s geometry, lead to two new constraints for the nonlinear solver. Besides, one more formula is achieved, which was previously found by other researchers, via a different mathematical process. Several benchmark structures, which have geometric nonlinear behavior, are analyzed with the proposed methods. The finite element method is utilized to analyze these problems. The abilities of suggested schemes are evaluated in tracing the complex equilibrium paths. Moreover, comparison study for the required number of increments and iterations is performed. Results reflect the robustness of the authors’ formulations.


I. Manafi, S. Shojaee,
Volume 8, Issue 2 (8-2018)
Abstract

Due to the favorable performance of structural topology optimization to create a proper understanding in the early stages of design, this issue is taken into consideration from the standpoint of research or industrial application in recent decades. Over the last three decades, several methods have been proposed for topology optimization. One of the methods that has been effectively used in structural topology optimization is level set method. Since in the level set method, the boundary of design domain is displayed implicitly, this method can easily modify the shape and topology of structure. Topological design with multiple constraints is of great importance in practical engineering design problems. Most recent topology optimization methods have used only the volume constraint; so in this paper, in addition to current volume constraint, the level set method combines with other constraints such as displacement and frequency. To demonstrate the effectiveness of the proposed level set approach, several examples are presented.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb