Search published articles


Showing 1 results for Improved Group Search Optimizer

L. J. Li, Z. H. Huang,
Volume 4, Issue 2 (6-2014)
Abstract

This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tabu search and a crowded distance operator. Two objective optimization problems, the minimum weight and maximum fundamental frequency, of four truss structures were optimized using the IMGSO. The results show that IMGSO rapidly generates the non-dominated set and is able to handle constraints. The Pareto front of the solutions from IMGSO is clearly dominant and has good diversity.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb