Search published articles


Showing 9 results for Meta-Heuristic Algorithms

M.h. Rabiei, M.t. Aalami, S. Talatahari,
Volume 8, Issue 3 (10-2018)
Abstract

This paper utilizes the Colliding Bodies of Optimization (CBO), Enhanced Colliding Bodies of Optimization (ECBO) and Vibrating Particles System (VPS) algorithms to optimize the reservoir system operation. CBO is based on physics equations governing the one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass and ECBO utilizes memory to save some historically best solutions and uses a random procedure to escape from local optima. VPS is based on simulating free vibration of single degree of freedom systems with viscous damping. To evaluate the performance of these three recent population-based meta-heuristic algorithms, they are applied to one of the most complex and challenging issues related to water resource management, called reservoir operation optimization problems. Hypothetical 4 and 10-reservoir systems are studied to demonstrate the effectiveness and robustness of the algorithms. The aim is on discovering the optimum mix of releases, which will lead to maximum benefit generation throughout the system. Comparative results show the successful performance of the VPS algorithm in comparison to the CBO and its enhanced version.
D. Sedaghat Shayegan, A Lork, S.a.h. Hashemi,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 1 (1-2020)
Abstract

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract

Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
E. Pouriyanezhad, H. Rahami, S. M. Mirhosseini,
Volume 10, Issue 2 (4-2020)
Abstract

In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calculation and new population generation in these two methods are completely different. At each stage of the ECM algorithm, successful distributions are identified and the covariance matrix of the successful distributions is formed. Subsequently, by the help of the principal component analysis (PCA), the scattering directions of these distributions will be achieved. The new population is generated by the combination of weighted directions that have a successful distribution and using random normal distribution. In the discrete ECM method, in case of succeeding in a certain number of cycles the step size is increased, otherwise the step size is reduced. In order to determine the efficiency of this method, three benchmark steel frames were optimized due to the resistance and displacement criteria specifications of the AISC-LRFD, and the results were compared to other optimization methods. Considerable outputs of this algorithm show that this method can handle the complex problems of optimizing discrete steel frames.
F. Rahimi,
Volume 10, Issue 4 (10-2020)
Abstract

By incorporating structural engineering, animal husbandry, and veterinary, this interdisciplinary research accomplishes the following two main objectives: 1) design and optimization to reduce the weight of the steel structure skeleton of the stable with ECBO & CBO algorithms; 2) improving the performance of the natural ventilation system in the stable with some changes in the structure's geometric design.
In this study, each algorithm's performance will be investigated in the course of accomplishing the aforementioned objective. Furthermore, using stress ratios by algorithms in each member will be studied. Finally, using the algorithms, a stable steel structure with lower weight is designed.
In this paper, through changing and improving the structure's geometric design, a structure more compatible with the natural ventilation system's requirements is designed. These changes are as follows: 1) design of a taller stable structure; 2) larger design of the air inlets in the joint line between the upper part of the side walls and the lower part of the pitched roof.
D. Sedaghat Shayegan,
Volume 12, Issue 4 (8-2022)
Abstract

In this article, the optimum design of a reinforced concrete solid slab is presented via an efficient hybrid metaheuristic algorithm that is recently developed. This algorithm utilizes the mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The efficiency of this algorithm is compared with mouth-brooding fish (MBF), Neural Dynamic (ND), Cuckoo Search Optimization (COA) and Particle Swarm Optimization (PSO). The cost of the solid slab is considered to be the objective function, and the design is based on the ACI code. The numerical results indicate that this hybrid metaheuristic algorithm can to construct very promising results and has merits in solving challenging optimization problems.
 
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract

Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
 
P. Salmanpour, Dr. A. Deylami, Professor M. Z. Kabir,
Volume 14, Issue 4 (10-2024)
Abstract

The multi-material size optimization of transmission tower trusses is carried out in the present study. Three real-size examples are designed, and statically analyzed, and the Black Hole Mechanics Optimization (BHMO) algorithm, a recently developed metaheuristic optimizer methodology, is employed. The BHMO algorithm's innovative search strategy, which draws inspiration from black hole quantum physics, along with a robust mathematical kernel based on the covariance matrix between variables and their associated costs, efficiently converges to global optimum solutions. Besides, three alloys of steel are taken into account in these examples for discrete size variables, each of which is defined in the problem by a weighted coefficient in terms of the elemental weight. The results also indicate that using multiple materials or alloys in addition to diverse cross-sectional sizes leads to the lowest possible cost and the most efficient solution.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb