S. M. Hosseini, Gh. Ghodrati Amiri, M. Mohamadi Dehcheshmeh,
Volume 10, Issue 1 (1-2020)
Abstract
Civil infrastructures such as bridges and buildings are prone to damage as a result of natural disasters. To understand damages induced by these events, the structure needs to be monitored. The field of engineering focusing on the process of evaluating the location and the intensity of the damage to the structure is called Structural Health Monitoring (SHM). Early damage prognosis in structures is the fundamental part of SHM. In fact, the main purpose of SHM is obtaining information about the existence, location, and the extent of damage in the structure. Since numerous structural damage detection problems can be solved as an inverse problem based on the proposed objective functions by using optimization algorithm, in this paper, related studies are investigated which discussing objective functions based on Modal Strain Energy (MSE) and flexibility methods including Modal Flexibility (MF), and Generalized Flexibility Matrix (GFM). To illustrate the extent of effectiveness of these objective functions based on the above-mentioned modal parameters, an efficiency index called Impact Factor (IF) is defined. Finally, the best objective function is introduced for each numerical case study based on IF by means of evaluating the obtained result.
M.h. Talebpour, S.m.a. Razavizade Mashizi, A. Goudarzi,
Volume 14, Issue 1 (1-2024)
Abstract
This paper proposes a method for structural damage detection through the sensitivity analysis of modal shapes in the calculation of modal strain energy (MSE). For this purpose, sensitivity equations were solved to determine the strain energy based on dynamic data (i.e., modal shapes). An objective function was then presented through the sensitivity-based MSE to detect structural damage. Due to the nonlinearity of sensitivity equations, the objective function of the proposed formulation can be minimized through the shuffled shepherd optimization algorithm (SSOA). The first few modes were employed for damage detection in solving the inverse problem. The proposed formulation was evaluated in a few numerical examples under different conditions. The numerical results indicated that the proposed formulation was efficient and effective in solving the inverse problem of damage detection. The proposed method not only minimized sensitivity to measurement errors but also effectively identified the location and severity of structural damage.