Search published articles


Showing 2 results for Parameter Reduction

M. Shahrouzi, H. Farah-Abadi,
Volume 8, Issue 1 (1-2018)
Abstract

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle swarm optimization is employed as the core of a multi-objective optimization framework with a repository to save Pareto solutions. The proposed method is tested on a variety of benchmark functions and structural sizing examples. Results show that it can provide Pareto front by lower computational time in competition with some other popular multi-objective algorithms.


M. Shahrouzi, A. Salehi,
Volume 10, Issue 1 (1-2020)
Abstract

Imperialist Competitive Algorithm, ICA is a meta-heuristic which simulates collapse of weak empires by more powerful ones that take possession of their colonies. In order to enhance performance, ICA is hybridized with proper features of Teaching-Learning-Based Optimization, TLBO. In addition, ICA walks are modified with an extra term to intensify looking for the global best solution. The number of control parameters and consequent tuning effort has been reduced in the proposed Imperialist Competitive Learner-Based Optimization, ICLBO with respect to ICA and several other methods. Efficiency and effectiveness of ICLBO is further evaluated treating a number of test functions in addition to continuous and discrete engineering problems. It is discussed and traced that balancing between exploration and exploitation is enhanced due to the proposed hybridization. Numerical results exhibit superior performance of ICLBO vs. ICA and a variety of other well-known meta-heuristics.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb