Search published articles


Showing 2 results for Reinforced Concrete Slab

Sh. Bijari, M. Sheikhi Azqandi,
Volume 12, Issue 2 (4-2022)
Abstract

In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under American Concrete Institute’s ACI 318-05 Standard. So, the numerical examples considered in this study have a large number of design variables and design constraints that make it complicated to converge the global optimal design. The ITEO has an excellent balance between the two phases of exploration and extraction and it has a high ability to find the optimal point of such problems. The comparison results between the ITEO and some other metaheuristic algorithms show the proposed method is competitive compared to others, and in some cases, superior to some other available metaheuristic techniques in terms of the faster convergence rate, performance, robustness of finding an optimal design solution, and needs a smaller number of function evaluations for designing considered constrained engineering problems.
 
B. Ahmadi-Nedushan, A. M. Almaleeh,
Volume 14, Issue 4 (10-2024)
Abstract

This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the critical role of elitism in GA performance. Without elitism, the GA consistently failed to reach the target objective, with success rates often nearing zero across various crossover fractions. Incorporating elitism dramatically increased success rates, highlighting the importance of preserving high-performing individuals. With an optimal configuration of 0.3 crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost versus slab length diagrams illustrate the economic benefits of GA optimization.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb