Search published articles


Showing 6 results for Shear Wall

A. Kaveh, P. Zakian,
Volume 2, Issue 3 (7-2012)
Abstract

In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and performance based seismic design optimization is accomplished. Capacity curves of the optimal solution are determined and compared incorporates soil–structure interaction. Also an optimization based method is proposed for bilinear approximation of capacity curve. These are a new methodology for seismic RC shear wall optimum design.
P. Mohebian, M. Mousavi, H. Rahami,
Volume 7, Issue 2 (3-2017)
Abstract

The present study is concerned with the simultaneous optimization of the size of components and the arrangement of connections for performance-based seismic design of low-rise SPSWs. Design variables include the size of beams and columns, the thickness of the infill panels, the type of each beam-to-column connection and the type of each infill-to-boundary frame connection. The objective function is considered to be the sum of the material cost and rigid connection fabrication cost. For comparison purposes, the SPSW model is also optimized with regard to two fixed connection arrangements. To fulfill the optimization task a new hybrid optimization algorithm called CBO-Jaya is proposed. The performance of the proposed hybrid optimization algorithm is assessed by two benchmark optimization problems. The results of the application of the proposed algorithm to the benchmark problem indicate the efficiency, robustness, and the fast convergence of the proposed algorithm compared with other meta-heuristic algorithms. The achieved results for the SPSWs demonstrate that incorporating the optimal arrangement of beam-to-column and infill-to-boundary frame connections into the optimization procedure results in considerable reduction of the overall cost.


M. H. Bagherinejad, A. Haghollahi,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, topology optimization (TO) is applied to determine the form, size and location of holes for the special form of perforated steel plate shear wall (PSPSW). The proposed model is based on the recently presented particular form of PSPSW that is called the ring-shaped steel plate shear wall. The strain energy is selected as the objective function in the optimization. Simple Isotropic Material with Penalization (SIMP) method and the solution algorithms, including sensitivity and condition-based methods are utilized in the TO. Four initial plate forms are presented in the TO with regards to the length of the connection between the plate and column. Based on the solution methods and initial forms of the plate, eight scenarios are proposed and seven different perforated plates obtained using TO. The nonlinear responses of the optimized perforated plates are compared together, and with the ring-shaped model as a benchmark. The nonlinear analysis is conducted under cyclic and monotonic loadings. Key issues include cyclic and monotonic behavior, pinching behavior, stiffness, load-carrying capacity, energy dissipation, fracture tendency and out-of-plane deformation are investigated and discussed. The results demonstrate the optimized models have better behavior than the ring-shaped model without changing the volume of the plate.
R. Kamgar, Y. Askari Dolatabad, M. R. Babadaei Samani,
Volume 9, Issue 4 (9-2019)
Abstract

Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at first, to verify the numerical simulation, the results of the experimental data are compared with those obtained from the numerical phase. Finally, the behavior of a one-bay three-story steel frame equipped with shear walls made of conventional steel, shape memory alloy and a combination of these two materials are studied when the structure is subjected to cyclic and seismic loadings. Results indicate that the use of shape memory alloy increases the maximum deformation, the yield displacement, and also the loading capacity of the structure. Also, it decreases the residual deformation of the structure and its initial stiffness. In general, using composite materials of conventional steel and shape memory alloy can reduce the maximum value of compression axial load of the column and, as a result, increase maximum rotation at the connections. In addition, the minimum and maximum values of base shear occurred in the model with 50% and 25% of Ni-Ti SMA material, respectively.
H.a. Jahangiry, M. Gholhaki, M. K. Sharbatdar ,
Volume 10, Issue 1 (1-2020)
Abstract

This research focuses on the effects of stiffeners and architectural opening on the steel shear wall topology optimization. To this aim, four relevant issues have been considered. The first issue is the optimality Pattern of the shear wall without stiffeners. The second is the Optimality Pattern of the shear wall with stiffeners in two directions. The third is the investigation on the topology optimization of the shear walls with fixed opening and the fourth is the multi-material topology optimization of the above issues. In the optimize process, the level set method based on the shape sensitivity and the finite element analysis for two-dimensional linear elastic problems has been used. The level set function implicitly indicated the boundaries of the design domain. Several numerical examples are used to demonstrate the optimal paths in the steel shear walls. The results show that optimal values have been changed by replacing stiffeners and creating openings in the wall, but the optimal topologies almost have a shape like a concentric bracing. Also, in the conventional shear walls (one material) the horizontal stiffeners have a significant effect on their performance.
B. Eftekhar, O. Rezaifar, A. Kheyroddin ,
Volume 10, Issue 2 (4-2020)
Abstract

Among the different lateral force resisting systems, shear walls are of appropriate stiffness and hence are extensively employed in the design of high-rise structures. The architectural concerns regarding the safety of these structures have further widened the application of coupled shear walls. The present study investigated the optimal dimensional design of coupled shear walls based on the improved Big Bang-Big Crunch algorithm. This optimization method achieves unique solutions in a short period according to the defined objective function, design variables, and constraints. Moreover, the results of the present study indicated that the dimensions of the coupling beam in the shear wall significantly affect the wall behavior by maximizing its efficiency which implies on its practical application by considering the wall in the flexural model.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb