Search published articles


Showing 2 results for Steel Braced Frame

M. Shahrouziand , S. Sardarinasab,
Volume 5, Issue 1 (1-2015)
Abstract

For most practical purposes, true topology optimization of a braced frame should be synchronized with its sizing. An integrated layout optimization is formulated here to simultaneously account for both member sizing and bracings’ topology in such a problem. Code-specific seismic design spectrum is applied to unify the earthquake excitation. The problem is solved for minimal structural weight under codified stress, deformation and also user-defined weak-storey and architectural constraints. Particle swarm optimization is hybridized with an extra memory consideration strategy to solve this problem. As another issue, Baldwin effect of memetic algorithm is utilized in the proposed method to enhance its search capability regarding the geometrical and topological constraints. Treating a number of planar braced frames revealed superior performance of the proposed hybrid method partiqularly in avoiding premature convergence over the common particle swarm optimiztion for such a discrete problem.
S. Gholizadeh, M. Ebadijalal,
Volume 7, Issue 2 (3-2017)
Abstract

The objective of the present paper is to propose a sequential enhanced colliding bodies optimization (SECBO) algorithm for implementation of seismic optimization of steel braced frames in the framework of performance-based design (PBD). In order to achieve this purpose, the ECBO is sequentially employed in a multi-stage scheme where in each stage an initial population is generated based on the information derived from the results of previous stages. The required structural seismic responses, at performance levels, are evaluated by performing nonlinear pushover analysis. Two numerical examples are presented to illustrate the efficiency of the proposed SECBO for tackling the seismic performance-based optimization problem. The numerical results demonstrate the computational advantages of the SECBO algorithm.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb