Showing 2 results for Water Distribution Network
R. Sheikholeslami, A. Kaveh, A. Tahershamsi , S. Talatahari,
Volume 4, Issue 1 (3-2014)
Abstract
A charged system search algorithm (CSS) is applied to the optimal cost design of water distribution networks. This algorithm is inspired by the Coulomb and Gauss’s laws of electrostatics in physics. The CSS utilizes a number of charged particles which influence each other based on their fitness values and their separation distances considering the governing law of Coulomb. The well-known benchmark instances, Hanoi network, double Hanoi network, and New York City tunnel problem, are utilized as the case studies to evaluate the optimization performance of CSS. Comparison of the results of the CSS with some other meta-heuristic algorithms indicates the performance of the new algorithm.
A. Afshar, S.m. Miri Khombi,
Volume 5, Issue 3 (8-2015)
Abstract
Location and types of sensors may be integrated for simultaneous achievement of water security goals and other water utility objectives, such as regulatory monitoring requirements. Complying with the recent recommendations on dual benefits of sensors, this study addresses the optimal location of these types of sensors in a multipurpose approach.
The study presents two mathematical models for optimum location of sensors as static double use benefit model (SDUBM) and dynamic double use benefit model (DDUBM) which provides tradeoffs between maximum monitored volume of water known as “demand coverage” and minimum consumption of contaminated water. In the proposed modeling scheme, sensors are located to maximize dual use benefits of achieving water security goals and accomplishing regulatory monitoring requirements. The validity of the model is tested using two extensively tested example problems with multi-objective ant colony optimization (ACO) algorithm. The Pareto front for different number of sensors are presented and discussed.