دوره 3، شماره 1 - ( 12-1391 )                   جلد 3 شماره 1 صفحات 149-131 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahrouzi M, Yousefi A. FIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS STRUCTURES BY SWARM INTELLIGENT ALGORITHMS. IJOCE 2013; 3 (1) :131-149
URL: http://ijoce.iust.ac.ir/article-1-123-fa.html
FIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS STRUCTURES BY SWARM INTELLIGENT ALGORITHMS. عنوان نشریه. 1391; 3 (1) :131-149

URL: http://ijoce.iust.ac.ir/article-1-123-fa.html


چکیده:   (24834 مشاهده)
Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and its variant PSOPC with Passive Congregation as a recent meta-heuristic. In order to make further improvement an additional hybrid PSO with genetic algorithm is also proposed as PSOGA with the idea of taking benefit of various movement types in the search space. A number of benchmark examples are then treated by the algorithms. Consequently, PSOGA stood superior to the others in effectiveness giving the best results while PSOPC had more efficiency and the least fit ones belonged to the Standard PSO.
متن کامل [PDF 1693 kb]   (6929 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1391/11/5 | انتشار: 1391/12/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb