دوره 3، شماره 4 - ( 7-1392 )                   جلد 3 شماره 4 صفحات 574-563 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemzadeh Azad S, Hasançebi O. IMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN. IJOCE 2013; 3 (4) :563-574
URL: http://ijoce.iust.ac.ir/article-1-148-fa.html
IMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN. عنوان نشریه. 1392; 3 (4) :563-574

URL: http://ijoce.iust.ac.ir/article-1-148-fa.html


چکیده:   (29935 مشاهده)
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses involved in the course of design optimization. In the UBS, the key issue is to identify those candidate solutions which have no chance to improve the search during the optimum design process. After identifying those non-improving solutions, they are directly excluded from the structural analysis stage, diminishing the total computational cost. The performance of the UBS integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO outperforms the original PSO algorithm in terms of the computational efficiency.
متن کامل [PDF 214 kb]   (6463 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1392/7/20 | پذیرش: 1392/8/28 | انتشار: 1392/8/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb