دوره 6، شماره 4 - ( 7-1395 )                   جلد 6 شماره 4 صفحات 578-567 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahrouzi M, Rashidi Moghadam M. GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION. IJOCE 2016; 6 (4) :567-578
URL: http://ijoce.iust.ac.ir/article-1-273-fa.html
GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION. عنوان نشریه. 1395; 6 (4) :567-578

URL: http://ijoce.iust.ac.ir/article-1-273-fa.html


چکیده:   (18669 مشاهده)

Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In order to solve this problem, the well-known K-means algorithm and colliding bodies optimization are employed. The latter acts like a parameter-less meta-heuristic while the former provides strong intensification. Consequently, a hybrid algorithm is proposed by combining features of both the algorithms to enhance the search and avoid premature convergence. Numerical simulations show competative performance of the proposed method in the treated example of optimal ground motion clustering; regarding global optimization and quality of final solutions.

متن کامل [PDF 663 kb]   (6205 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1395/2/7 | پذیرش: 1395/2/7 | انتشار: 1395/2/7

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb