دوره 10، شماره 2 - ( 2-1399 )                   جلد 10 شماره 2 صفحات 215-201 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourrostam D, Mousavi S Y, Bakhshpoori T, Shabrang K. MODELING THE COMPRESSIVE STRENGTH OF CONCRETE MADE WITH EXPANDED PERLITE POWDER. IJOCE 2020; 10 (2) :201-215
URL: http://ijoce.iust.ac.ir/article-1-430-fa.html
MODELING THE COMPRESSIVE STRENGTH OF CONCRETE MADE WITH EXPANDED PERLITE POWDER. عنوان نشریه. 1399; 10 (2) :201-215

URL: http://ijoce.iust.ac.ir/article-1-430-fa.html


چکیده:   (11600 مشاهده)
In recent years, soft computing and artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been effectively used in various civil engineering applications. This study aims to examine the potential of ANN and ANFIS for modeling the compressive strength of concrete containing expanded perlite powder (EPP). For doing this, a total of forty-five EPP incorporated concrete mixtures were produced and tested for compressive strength at different curing ages of 3, 7, 28, 42 and 90 days. Two different ANN models were developed and the suitable and stable ANN architecture for each model was considered by calculating various statistical parameters. For comparative purposes, two ANFIS models with different membership functions were also trained. According to the results, it can be concluded that the proposed ANN models relatively give a good degree of accuracy in predicting the compressive strength of concrete made with EPP, higher than that of observed from ANFIS models.
متن کامل [PDF 793 kb]   (3999 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1398/12/28 | پذیرش: 1398/12/28 | انتشار: 1398/12/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb